Sums of Products of Certain Arthmetical Functions
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 31
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Sharp asymptotic formulae for certain sums of the type
$\sum_{n\leq x}f(n)g(n)$ are derived, where $f$ is a suitable multiplicative
and $g$ a suitable additive function. The proofs are based on an analytic
method which consists of considering the Dirichlet series generated by
$f(n)z^{g(n)}$, $z$ complex.
Classification :
10H25
@article{PIM_1987_N_S_41_55_a3,
author = {Aleksandar Ivi\'c},
title = {Sums of {Products} of {Certain} {Arthmetical} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {31 },
year = {1987},
volume = {_N_S_41},
number = {55},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/}
}
Aleksandar Ivić. Sums of Products of Certain Arthmetical Functions. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/