Sums of Products of Certain Arthmetical Functions
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 31
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Sharp asymptotic formulae for certain sums of the type
$\sum_{n\leq x}f(n)g(n)$ are derived, where $f$ is a suitable multiplicative
and $g$ a suitable additive function. The proofs are based on an analytic
method which consists of considering the Dirichlet series generated by
$f(n)z^{g(n)}$, $z$ complex.
Classification :
10H25
@article{PIM_1987_N_S_41_55_a3,
author = {Aleksandar Ivi\'c},
title = {Sums of {Products} of {Certain} {Arthmetical} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {31 },
publisher = {mathdoc},
volume = {_N_S_41},
number = {55},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/}
}
Aleksandar Ivić. Sums of Products of Certain Arthmetical Functions. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/