Sums of Products of Certain Arthmetical Functions
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 31 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Sharp asymptotic formulae for certain sums of the type $\sum_{n\leq x}f(n)g(n)$ are derived, where $f$ is a suitable multiplicative and $g$ a suitable additive function. The proofs are based on an analytic method which consists of considering the Dirichlet series generated by $f(n)z^{g(n)}$, $z$ complex.
Classification : 10H25
@article{PIM_1987_N_S_41_55_a3,
     author = {Aleksandar Ivi\'c},
     title = {Sums of {Products} of {Certain} {Arthmetical} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     publisher = {mathdoc},
     volume = {_N_S_41},
     number = {55},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/}
}
TY  - JOUR
AU  - Aleksandar Ivić
TI  - Sums of Products of Certain Arthmetical Functions
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 31 
VL  - _N_S_41
IS  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/
LA  - en
ID  - PIM_1987_N_S_41_55_a3
ER  - 
%0 Journal Article
%A Aleksandar Ivić
%T Sums of Products of Certain Arthmetical Functions
%J Publications de l'Institut Mathématique
%D 1987
%P 31 
%V _N_S_41
%N 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/
%G en
%F PIM_1987_N_S_41_55_a3
Aleksandar Ivić. Sums of Products of Certain Arthmetical Functions. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/