Sums of Products of Certain Arthmetical Functions
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 31

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Sharp asymptotic formulae for certain sums of the type $\sum_{n\leq x}f(n)g(n)$ are derived, where $f$ is a suitable multiplicative and $g$ a suitable additive function. The proofs are based on an analytic method which consists of considering the Dirichlet series generated by $f(n)z^{g(n)}$, $z$ complex.
Classification : 10H25
@article{PIM_1987_N_S_41_55_a3,
     author = {Aleksandar Ivi\'c},
     title = {Sums of {Products} of {Certain} {Arthmetical} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     publisher = {mathdoc},
     volume = {_N_S_41},
     number = {55},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/}
}
TY  - JOUR
AU  - Aleksandar Ivić
TI  - Sums of Products of Certain Arthmetical Functions
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 31 
VL  - _N_S_41
IS  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/
LA  - en
ID  - PIM_1987_N_S_41_55_a3
ER  - 
%0 Journal Article
%A Aleksandar Ivić
%T Sums of Products of Certain Arthmetical Functions
%J Publications de l'Institut Mathématique
%D 1987
%P 31 
%V _N_S_41
%N 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/
%G en
%F PIM_1987_N_S_41_55_a3
Aleksandar Ivić. Sums of Products of Certain Arthmetical Functions. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a3/