Mixed Norm Spaces of Analytic and Harmonic Functions, II
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 97
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we continue the study of the spaces
$h(p,q,\varphi)$ and $H(p,q,\varphi)$. We apply the main results of
Part I to obtain new information on the coefficient multipliers of
these spaces. For example, we find the multipliers from
$h(p,q,\varphi)$ to $h(\infty,q_0,\varphi)$ for any $p\geq 1$,
$q,p_0>0$ and any quasi-normal function $\varphi$, and this improves
and generalizes a result of Shields and Williams [16]. We also describe
the multipliers from $H(p,q,\alpha)$, $p\leq 1$, to
$H(p_0,q_0,\alpha)$, $p_0\geq p$, and $l^s,\,s> 0$.
Classification :
46E15 30H05
@article{PIM_1987_N_S_41_55_a12,
author = {Miroslav Pavlovi\'c},
title = {Mixed {Norm} {Spaces} of {Analytic} and {Harmonic} {Functions,} {II}},
journal = {Publications de l'Institut Math\'ematique},
pages = {97 },
year = {1987},
volume = {_N_S_41},
number = {55},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a12/}
}
Miroslav Pavlović. Mixed Norm Spaces of Analytic and Harmonic Functions, II. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 97 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a12/