On Reduced Products of Forcing Systems
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 17 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We introduce two definitions of reduced products of forcing systems and using the appropriate ultraproduct we show that for any theory $T$ of a first order finitary language $L$ there is a forcing system whose forcing companion intersected with $\sent(L)$ gives $T$.
Classification : 03C25
@article{PIM_1987_N_S_41_55_a1,
     author = {Milan Grulovi\'c},
     title = {On {Reduced} {Products} of {Forcing} {Systems}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {17 },
     publisher = {mathdoc},
     volume = {_N_S_41},
     number = {55},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a1/}
}
TY  - JOUR
AU  - Milan Grulović
TI  - On Reduced Products of Forcing Systems
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 17 
VL  - _N_S_41
IS  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a1/
LA  - en
ID  - PIM_1987_N_S_41_55_a1
ER  - 
%0 Journal Article
%A Milan Grulović
%T On Reduced Products of Forcing Systems
%J Publications de l'Institut Mathématique
%D 1987
%P 17 
%V _N_S_41
%N 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a1/
%G en
%F PIM_1987_N_S_41_55_a1
Milan Grulović. On Reduced Products of Forcing Systems. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a1/