On Reduced Products of Forcing Systems
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 17
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We introduce two definitions of reduced products of forcing
systems and using the appropriate ultraproduct we show that for any theory
$T$ of a first order finitary language $L$ there is a forcing system whose
forcing companion intersected with $\sent(L)$ gives $T$.
Classification :
03C25
@article{PIM_1987_N_S_41_55_a1,
author = {Milan Grulovi\'c},
title = {On {Reduced} {Products} of {Forcing} {Systems}},
journal = {Publications de l'Institut Math\'ematique},
pages = {17 },
publisher = {mathdoc},
volume = {_N_S_41},
number = {55},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a1/}
}
Milan Grulović. On Reduced Products of Forcing Systems. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a1/