Asymptotic Properties of the Radon Transform in Rn
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 85

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The notion of regular variation in R$^n$ introduced by Yakymiv [6] is used to study the asymptotic properties of the Radon and dual Radon transform of R$^n$. As a corollary, an $n$-dimensional version of a theorem of Aljančić, Bojanić and Tomić [5] is proved. This corollary complements results of Ostrogorski [8].
Classification : 44A15 26B35
@article{PIM_1986_N_S_40_54_a9,
     author = {William O. Bray},
     title = {Asymptotic {Properties} of the {Radon} {Transform} in {Rn}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {85 },
     publisher = {mathdoc},
     volume = {_N_S_40},
     number = {54},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a9/}
}
TY  - JOUR
AU  - William O. Bray
TI  - Asymptotic Properties of the Radon Transform in Rn
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 85 
VL  - _N_S_40
IS  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a9/
LA  - en
ID  - PIM_1986_N_S_40_54_a9
ER  - 
%0 Journal Article
%A William O. Bray
%T Asymptotic Properties of the Radon Transform in Rn
%J Publications de l'Institut Mathématique
%D 1986
%P 85 
%V _N_S_40
%N 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a9/
%G en
%F PIM_1986_N_S_40_54_a9
William O. Bray. Asymptotic Properties of the Radon Transform in Rn. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 85 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a9/