Asymptotic Properties of the Radon Transform in Rn
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 85 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The notion of regular variation in R$^n$ introduced by Yakymiv [6] is used to study the asymptotic properties of the Radon and dual Radon transform of R$^n$. As a corollary, an $n$-dimensional version of a theorem of Aljančić, Bojanić and Tomić [5] is proved. This corollary complements results of Ostrogorski [8].
Classification : 44A15 26B35
@article{PIM_1986_N_S_40_54_a9,
     author = {William O. Bray},
     title = {Asymptotic {Properties} of the {Radon} {Transform} in {Rn}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {85 },
     publisher = {mathdoc},
     volume = {_N_S_40},
     number = {54},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a9/}
}
TY  - JOUR
AU  - William O. Bray
TI  - Asymptotic Properties of the Radon Transform in Rn
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 85 
VL  - _N_S_40
IS  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a9/
LA  - en
ID  - PIM_1986_N_S_40_54_a9
ER  - 
%0 Journal Article
%A William O. Bray
%T Asymptotic Properties of the Radon Transform in Rn
%J Publications de l'Institut Mathématique
%D 1986
%P 85 
%V _N_S_40
%N 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a9/
%G en
%F PIM_1986_N_S_40_54_a9
William O. Bray. Asymptotic Properties of the Radon Transform in Rn. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 85 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a9/