On a Functional Which is Quadratic on A-orthogonal Vectors
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 63
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $X$ be a complex Hilbert space, $\dim X\geq 3$ and $A$ be a
bounded selfadjoint operator defined on $X$. We give a representation of a
continuous functional $H$ defined on $X$ under the condition that $H$ is
quadratic on $A$-orthogonal vectors.
Classification :
39B70
@article{PIM_1986_N_S_40_54_a7,
author = {Hamid Drljevi\'c},
title = {On a {Functional} {Which} is {Quadratic} on {A-orthogonal} {Vectors}},
journal = {Publications de l'Institut Math\'ematique},
pages = {63 },
year = {1986},
volume = {_N_S_40},
number = {54},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a7/}
}
Hamid Drljević. On a Functional Which is Quadratic on A-orthogonal Vectors. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 63 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a7/