Mixed Norm Spaces of Analytic and Harmonic Functions, I
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 117
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For an increasing absolutely continuous function
$\varphi:(0,1)\to(0,+\infty)$ we define the spaces
$H(p,q,\varphi)$, $p>0$, and $h(p,q,\varphi)$, $p\geq 1$,
(of analytic and harmonic functions $f$ on the unit disc, respectively) by
the requirement that the function $r\to\varphi(1-r)M_p(r,f)$,
$0
Classification :
46E14 30H05
@article{PIM_1986_N_S_40_54_a13,
author = {Miroslav Pavlovi\'c},
title = {Mixed {Norm} {Spaces} of {Analytic} and {Harmonic} {Functions,} {I}},
journal = {Publications de l'Institut Math\'ematique},
pages = {117 },
year = {1986},
volume = {_N_S_40},
number = {54},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a13/}
}
Miroslav Pavlović. Mixed Norm Spaces of Analytic and Harmonic Functions, I. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 117 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a13/