Mixed Norm Spaces of Analytic and Harmonic Functions, I
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 117
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For an increasing absolutely continuous function
$\varphi:(0,1)\to(0,+\infty)$ we define the spaces
$H(p,q,\varphi)$, $p>0$, and $h(p,q,\varphi)$, $p\geq 1$,
(of analytic and harmonic functions $f$ on the unit disc, respectively) by
the requirement that the function $r\to\varphi(1-r)M_p(r,f)$,
$0
Classification :
46E14 30H05
@article{PIM_1986_N_S_40_54_a13,
author = {Miroslav Pavlovi\'c},
title = {Mixed {Norm} {Spaces} of {Analytic} and {Harmonic} {Functions,} {I}},
journal = {Publications de l'Institut Math\'ematique},
pages = {117 },
publisher = {mathdoc},
volume = {_N_S_40},
number = {54},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a13/}
}
Miroslav Pavlović. Mixed Norm Spaces of Analytic and Harmonic Functions, I. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 117 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a13/