Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 99 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We study the integral equation $x=F(x)$ in a Banach space $E$, where $F(x)(t)=\int_Df(t,s,x(s))ds$ and $f$ satisfies usual conditions which guarantee that $F$ continuously maps the space $L^P(D,E)$ into itself. We show that if $f$ satisfies a Kamke condition with respect to the Kuratowski measure of noncompactness, then the above equation has a solution in $L^P(D,E)$.
Classification : 45N05
@article{PIM_1986_N_S_40_54_a10,
     author = {Stanislaw Szufla},
     title = {Existence {Theorems} for {Lp} - {Solutions} of {Integral} {Equations} in {Banach} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {99 },
     publisher = {mathdoc},
     volume = {_N_S_40},
     number = {54},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/}
}
TY  - JOUR
AU  - Stanislaw Szufla
TI  - Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 99 
VL  - _N_S_40
IS  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/
LA  - en
ID  - PIM_1986_N_S_40_54_a10
ER  - 
%0 Journal Article
%A Stanislaw Szufla
%T Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces
%J Publications de l'Institut Mathématique
%D 1986
%P 99 
%V _N_S_40
%N 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/
%G en
%F PIM_1986_N_S_40_54_a10
Stanislaw Szufla. Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 99 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/