Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 99
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We study the integral equation $x=F(x)$ in a Banach space
$E$, where $F(x)(t)=\int_Df(t,s,x(s))ds$ and $f$ satisfies usual
conditions which guarantee that $F$ continuously maps the space
$L^P(D,E)$ into itself. We show that if $f$ satisfies a Kamke condition
with respect to the Kuratowski measure of noncompactness, then the
above equation has a solution in $L^P(D,E)$.
Classification :
45N05
@article{PIM_1986_N_S_40_54_a10,
author = {Stanislaw Szufla},
title = {Existence {Theorems} for {Lp} - {Solutions} of {Integral} {Equations} in {Banach} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {99 },
publisher = {mathdoc},
volume = {_N_S_40},
number = {54},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/}
}
TY - JOUR AU - Stanislaw Szufla TI - Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces JO - Publications de l'Institut Mathématique PY - 1986 SP - 99 VL - _N_S_40 IS - 54 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/ LA - en ID - PIM_1986_N_S_40_54_a10 ER -
Stanislaw Szufla. Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 99 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/