Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 99
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We study the integral equation $x=F(x)$ in a Banach space
$E$, where $F(x)(t)=\int_Df(t,s,x(s))ds$ and $f$ satisfies usual
conditions which guarantee that $F$ continuously maps the space
$L^P(D,E)$ into itself. We show that if $f$ satisfies a Kamke condition
with respect to the Kuratowski measure of noncompactness, then the
above equation has a solution in $L^P(D,E)$.
Classification :
45N05
@article{PIM_1986_N_S_40_54_a10,
author = {Stanislaw Szufla},
title = {Existence {Theorems} for {Lp} - {Solutions} of {Integral} {Equations} in {Banach} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {99 },
year = {1986},
volume = {_N_S_40},
number = {54},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/}
}
Stanislaw Szufla. Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 99 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/