Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 99

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We study the integral equation $x=F(x)$ in a Banach space $E$, where $F(x)(t)=\int_Df(t,s,x(s))ds$ and $f$ satisfies usual conditions which guarantee that $F$ continuously maps the space $L^P(D,E)$ into itself. We show that if $f$ satisfies a Kamke condition with respect to the Kuratowski measure of noncompactness, then the above equation has a solution in $L^P(D,E)$.
Classification : 45N05
@article{PIM_1986_N_S_40_54_a10,
     author = {Stanislaw Szufla},
     title = {Existence {Theorems} for {Lp} - {Solutions} of {Integral} {Equations} in {Banach} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {99 },
     publisher = {mathdoc},
     volume = {_N_S_40},
     number = {54},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/}
}
TY  - JOUR
AU  - Stanislaw Szufla
TI  - Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 99 
VL  - _N_S_40
IS  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/
LA  - en
ID  - PIM_1986_N_S_40_54_a10
ER  - 
%0 Journal Article
%A Stanislaw Szufla
%T Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces
%J Publications de l'Institut Mathématique
%D 1986
%P 99 
%V _N_S_40
%N 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/
%G en
%F PIM_1986_N_S_40_54_a10
Stanislaw Szufla. Existence Theorems for Lp - Solutions of Integral Equations in Banach Spaces. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 99 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a10/