An Application of Circuit Polynomials to the Counting of Spanning Trees in Graphs
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 63
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
$t$ is shown that the number of spanning trees in a graph
can be obtained from the circuit polynomial of an associated graph. From
this, the number of spanning tress in a regular graph is shown to be
obtainable from the characteristic polynomial of a node-deleted subgraph.
Finally, Cayley's theorem for the number of labelled tress is derived.
Classification :
05C99
@article{PIM_1986_N_S_39_53_a9,
author = {E.J. Farrell and J.C. Grell},
title = {An {Application} of {Circuit} {Polynomials} to the {Counting} of {Spanning} {Trees} in {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {63 },
year = {1986},
volume = {_N_S_39},
number = {53},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a9/}
}
TY - JOUR AU - E.J. Farrell AU - J.C. Grell TI - An Application of Circuit Polynomials to the Counting of Spanning Trees in Graphs JO - Publications de l'Institut Mathématique PY - 1986 SP - 63 VL - _N_S_39 IS - 53 UR - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a9/ LA - en ID - PIM_1986_N_S_39_53_a9 ER -
E.J. Farrell; J.C. Grell. An Application of Circuit Polynomials to the Counting of Spanning Trees in Graphs. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 63 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a9/