An Application of Circuit Polynomials to the Counting of Spanning Trees in Graphs
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 63 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

$t$ is shown that the number of spanning trees in a graph can be obtained from the circuit polynomial of an associated graph. From this, the number of spanning tress in a regular graph is shown to be obtainable from the characteristic polynomial of a node-deleted subgraph. Finally, Cayley's theorem for the number of labelled tress is derived.
Classification : 05C99
@article{PIM_1986_N_S_39_53_a9,
     author = {E.J. Farrell and J.C. Grell},
     title = {An {Application} of {Circuit} {Polynomials} to the {Counting} of {Spanning} {Trees} in {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {63 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a9/}
}
TY  - JOUR
AU  - E.J. Farrell
AU  - J.C. Grell
TI  - An Application of Circuit Polynomials to the Counting of Spanning Trees in Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 63 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a9/
LA  - en
ID  - PIM_1986_N_S_39_53_a9
ER  - 
%0 Journal Article
%A E.J. Farrell
%A J.C. Grell
%T An Application of Circuit Polynomials to the Counting of Spanning Trees in Graphs
%J Publications de l'Institut Mathématique
%D 1986
%P 63 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a9/
%G en
%F PIM_1986_N_S_39_53_a9
E.J. Farrell; J.C. Grell. An Application of Circuit Polynomials to the Counting of Spanning Trees in Graphs. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 63 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a9/