On the Spectral Radius of Connected Graphs
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 45 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove a general theorem about the maximum spectral radius of connected graphs with n vertices and e edges and use it to determine the graphs with maximum spectral radius when $e\leq n+5$ and $n$ is sufficiently large.
Classification : 05C50
@article{PIM_1986_N_S_39_53_a7,
     author = {Richard A. Brualdi and Ernie S. Solheid},
     title = {On the {Spectral} {Radius} of {Connected} {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {45 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a7/}
}
TY  - JOUR
AU  - Richard A. Brualdi
AU  - Ernie S. Solheid
TI  - On the Spectral Radius of Connected Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 45 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a7/
LA  - en
ID  - PIM_1986_N_S_39_53_a7
ER  - 
%0 Journal Article
%A Richard A. Brualdi
%A Ernie S. Solheid
%T On the Spectral Radius of Connected Graphs
%J Publications de l'Institut Mathématique
%D 1986
%P 45 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a7/
%G en
%F PIM_1986_N_S_39_53_a7
Richard A. Brualdi; Ernie S. Solheid. On the Spectral Radius of Connected Graphs. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 45 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a7/