Branching Extent and Spectra of Trees
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 35 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Following the concepts of Ruch and Gutman [7] we discuss possible connections between branching extent and spectra of trees. It is suggested to what extent relations between spectra reflect partial ordering of trees according to their branching. We show how branching can be measured by certain coefficients of characteristic polynomial of a tree. The second part of the paper is devoted to the problem of constructing trees with a fixed measure of branching. A non-polynomial time algorithm is developed and its acceptably good performance in the majority of cases is documented by sample computation results.
Classification : 05C05 05C50 06A10
@article{PIM_1986_N_S_39_53_a6,
     author = {Milosz Michalski},
     title = {Branching {Extent} and {Spectra} of {Trees}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {35 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a6/}
}
TY  - JOUR
AU  - Milosz Michalski
TI  - Branching Extent and Spectra of Trees
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 35 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a6/
LA  - en
ID  - PIM_1986_N_S_39_53_a6
ER  - 
%0 Journal Article
%A Milosz Michalski
%T Branching Extent and Spectra of Trees
%J Publications de l'Institut Mathématique
%D 1986
%P 35 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a6/
%G en
%F PIM_1986_N_S_39_53_a6
Milosz Michalski. Branching Extent and Spectra of Trees. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 35 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a6/