A Note on a Bermond's Conjecture
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 33
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If $n\geq 2$ is prime and $k\leq n$, then the arcs of
$K_n^*$ can be partitioned into $k$-cycles iff $n(n-1)\equiv 0$ (mod $k$).
Classification :
05C40
@article{PIM_1986_N_S_39_53_a5,
author = {Danut Marcu},
title = {A {Note} on a {Bermond's} {Conjecture}},
journal = {Publications de l'Institut Math\'ematique},
pages = {33 },
year = {1986},
volume = {_N_S_39},
number = {53},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a5/}
}
Danut Marcu. A Note on a Bermond's Conjecture. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 33 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a5/