A Note on a Bermond's Conjecture
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 33 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $n\geq 2$ is prime and $k\leq n$, then the arcs of $K_n^*$ can be partitioned into $k$-cycles iff $n(n-1)\equiv 0$ (mod $k$).
Classification : 05C40
@article{PIM_1986_N_S_39_53_a5,
     author = {Danut Marcu},
     title = {A {Note} on a {Bermond's} {Conjecture}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {33 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a5/}
}
TY  - JOUR
AU  - Danut Marcu
TI  - A Note on a Bermond's Conjecture
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 33 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a5/
LA  - en
ID  - PIM_1986_N_S_39_53_a5
ER  - 
%0 Journal Article
%A Danut Marcu
%T A Note on a Bermond's Conjecture
%J Publications de l'Institut Mathématique
%D 1986
%P 33 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a5/
%G en
%F PIM_1986_N_S_39_53_a5
Danut Marcu. A Note on a Bermond's Conjecture. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 33 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a5/