A Note on the Independence Number of an Identically Self-dual Perfect Matroid Design
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 29
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $E$ be a finite set and $M(E,r)$ an identically self-dual
perfect matroid design on $E$, with hyperplane cardinality $c(M)$, and $r$
as a rank function. If $M$ is not the $r(E)$-uniform matroid, we show that
its independence number equals $c(M)-1$.
Classification :
05B35
@article{PIM_1986_N_S_39_53_a4,
author = {Danut Marcu},
title = {A {Note} on the {Independence} {Number} of an {Identically} {Self-dual} {Perfect} {Matroid} {Design}},
journal = {Publications de l'Institut Math\'ematique},
pages = {29 },
year = {1986},
volume = {_N_S_39},
number = {53},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a4/}
}
TY - JOUR AU - Danut Marcu TI - A Note on the Independence Number of an Identically Self-dual Perfect Matroid Design JO - Publications de l'Institut Mathématique PY - 1986 SP - 29 VL - _N_S_39 IS - 53 UR - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a4/ LA - en ID - PIM_1986_N_S_39_53_a4 ER -
Danut Marcu. A Note on the Independence Number of an Identically Self-dual Perfect Matroid Design. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 29 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a4/