A Note on the Independence Number of an Identically Self-dual Perfect Matroid Design
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 29 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $E$ be a finite set and $M(E,r)$ an identically self-dual perfect matroid design on $E$, with hyperplane cardinality $c(M)$, and $r$ as a rank function. If $M$ is not the $r(E)$-uniform matroid, we show that its independence number equals $c(M)-1$.
Classification : 05B35
@article{PIM_1986_N_S_39_53_a4,
     author = {Danut Marcu},
     title = {A {Note} on the {Independence} {Number} of an {Identically} {Self-dual} {Perfect} {Matroid} {Design}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {29 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a4/}
}
TY  - JOUR
AU  - Danut Marcu
TI  - A Note on the Independence Number of an Identically Self-dual Perfect Matroid Design
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 29 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a4/
LA  - en
ID  - PIM_1986_N_S_39_53_a4
ER  - 
%0 Journal Article
%A Danut Marcu
%T A Note on the Independence Number of an Identically Self-dual Perfect Matroid Design
%J Publications de l'Institut Mathématique
%D 1986
%P 29 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a4/
%G en
%F PIM_1986_N_S_39_53_a4
Danut Marcu. A Note on the Independence Number of an Identically Self-dual Perfect Matroid Design. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 29 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a4/