Unions and Intersections of Isomoryhic Images of Nonstandard Models of Arithmetic
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 25
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider those initial segments of a nonstandard model
$\frak M$ of Peano arithmetic (abbreviated by $P$) which can be obtained as
unions or intersections of initial segments of $\frak M$ isomorphic to
$\frak M$. For any consistent theory $T\supseteq P$ we find models of $T$
having collections of initial segments densely ordered by inclusion so that
for any segment $I$ from such collection and any $k\in \omega$ the family
$\c{A}_k^{\,\frak M}= \{\frak N|\,\frak N\subseteq_e \frak M. \frak N
\prec_{\Sigma_k} \frak M, \frak N\cong \frak M\}$ can be partioned into two
disjoint parts $\c{A}_1$, and $\c{A}_2$ satisfying $I= \bigcup\c{A}_1=
\bigcap \c{A}_2$ i.e\. $I$ is a ``point of accumulation" for all families
$\c{A}_k^{\,\frak M}$. We investigate. the order type of such collections of
segments in the case of recursively saturated models of $P$.
Classification :
03H15
@article{PIM_1986_N_S_39_53_a3,
author = {Aleksandar Ignjatovi\'c},
title = {Unions and {Intersections} of {Isomoryhic} {Images} of {Nonstandard} {Models} of {Arithmetic}},
journal = {Publications de l'Institut Math\'ematique},
pages = {25 },
year = {1986},
volume = {_N_S_39},
number = {53},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a3/}
}
TY - JOUR AU - Aleksandar Ignjatović TI - Unions and Intersections of Isomoryhic Images of Nonstandard Models of Arithmetic JO - Publications de l'Institut Mathématique PY - 1986 SP - 25 VL - _N_S_39 IS - 53 UR - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a3/ LA - en ID - PIM_1986_N_S_39_53_a3 ER -
Aleksandar Ignjatović. Unions and Intersections of Isomoryhic Images of Nonstandard Models of Arithmetic. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 25 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a3/