Ob Ocenkah Srednih Znachenij Sluchajnyh Ar-polej
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 187
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Rassmatrivaetsya avtoregressivnnoe pole $\eta(u,v)$
tipa $(p,q)$ s parametrami $\theta_1$ i $\theta_2$
$
\sum_{j=0}^p\sum_{k=1}^q a_{jk}\eta(u-j\theta_1,v-k\theta_2)= \xi(u,v)
$
gde $\xi(u,v)$ nepreryvno v srednem kvadratichnom odnorodnoe
sluchajnoe pole s racional'noj spektral'noj plotnost'yu. Izuchaetsya,
po metodu A.M. Yagloma, vid spektral'noj harakteristiki najluchshej
nesmeshchennoj ocenki srednego znacheniya polya $\eta$ po izvestnym
znacheniyam etogo polya na pryamogol'nike.
Classification :
60G60
@article{PIM_1986_N_S_39_53_a26,
author = {J. Mali\v{s}i\'c},
title = {Ob {Ocenkah} {Srednih} {Znachenij} {Sluchajnyh} {Ar-polej}},
journal = {Publications de l'Institut Math\'ematique},
pages = {187 },
publisher = {mathdoc},
volume = {_N_S_39},
number = {53},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a26/}
}
J. Mališić. Ob Ocenkah Srednih Znachenij Sluchajnyh Ar-polej. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 187 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a26/