Some Global Properties of Plane Curves
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 169 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We introduce $L$-involutions for any positive number $L$ and we give a characterization of the class $(L)$ of all $L$-involutions. Then we define so-called $\nu$-involutive pairs of points of a curve $C\in \Cal M$ where $\Cal M$ is the family of all $C^1$ plane closed curves. For arbitrary $C\in \Cal M$ of length $L$ and for arbitrary $\nu\in (L)$ there exists a $\nu$-involutive pair of $C$ such that the tangent lines at the points ot this pair are parallel. Applications of this fact are given.
Classification : 53C65
@article{PIM_1986_N_S_39_53_a23,
     author = {Waldemar Cie\'slak},
     title = {Some {Global} {Properties} of {Plane} {Curves}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {169 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a23/}
}
TY  - JOUR
AU  - Waldemar Cieślak
TI  - Some Global Properties of Plane Curves
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 169 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a23/
LA  - en
ID  - PIM_1986_N_S_39_53_a23
ER  - 
%0 Journal Article
%A Waldemar Cieślak
%T Some Global Properties of Plane Curves
%J Publications de l'Institut Mathématique
%D 1986
%P 169 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a23/
%G en
%F PIM_1986_N_S_39_53_a23
Waldemar Cieślak. Some Global Properties of Plane Curves. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 169 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a23/