On Asymptotic Behaviour of Solutions of a First Order Functional Differential Equation
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 135
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Necessary and sufficient conditions for oscillation of
solutions of the equation
$
y'(t)+ \gamma f(t,y(t),y(\Delta_1(t,y(t))),\dots, y(\Delta_n(t,y(t))))=
Q(t),\enskip t\geq t_0\in R,\enskip \gamma= \pm 1,\enskip n\geq 1
$
are obtained in the case when $Q(t)\equiv 0$ on $[t_0,\infty)$ and sufficient
conditions for oscillation and/or nonoscillation are obtained in the case
when $Q(t)\not\equiv 0$ on $[t_0,\infty)$. The asymptotic behaviour of
oscillatory and nonoscillatory solutions of this equation is studied, too.
Classification :
34K20
@article{PIM_1986_N_S_39_53_a18,
author = {D. C. Angelova and Drumi D. Bainov},
title = {On {Asymptotic} {Behaviour} of {Solutions} of a {First} {Order} {Functional} {Differential} {Equation}},
journal = {Publications de l'Institut Math\'ematique},
pages = {135 },
year = {1986},
volume = {_N_S_39},
number = {53},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a18/}
}
TY - JOUR AU - D. C. Angelova AU - Drumi D. Bainov TI - On Asymptotic Behaviour of Solutions of a First Order Functional Differential Equation JO - Publications de l'Institut Mathématique PY - 1986 SP - 135 VL - _N_S_39 IS - 53 UR - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a18/ LA - en ID - PIM_1986_N_S_39_53_a18 ER -
%0 Journal Article %A D. C. Angelova %A Drumi D. Bainov %T On Asymptotic Behaviour of Solutions of a First Order Functional Differential Equation %J Publications de l'Institut Mathématique %D 1986 %P 135 %V _N_S_39 %N 53 %U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a18/ %G en %F PIM_1986_N_S_39_53_a18
D. C. Angelova; Drumi D. Bainov. On Asymptotic Behaviour of Solutions of a First Order Functional Differential Equation. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 135 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a18/