On the Convergence of Biorthogonal Series Corresponding to Nonselfadjoint Sturm-Liouville Operator with Discontinuous Coefficients
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 129
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the convergence of the biorthogcnal series
corresponding to the nonselfadjoint Sturm-Liouville operator at the points of
discontinuity of its coefficients. For any function $f(x)\in L_2$ we
construct a function $\tilde f_{x_0}(x)$ such that the trigonometrical Fourier
series of $\tilde f_{x_0}(x)$ is convergent at the point of discontinuity
$x_0$ if and only if the biorthogonal series of $f(x)$ is convergent at this
point.
Classification :
34B25
@article{PIM_1986_N_S_39_53_a17,
author = {Neboj\v{s}a L. La\v{z}eti\'c},
title = {On the {Convergence} of {Biorthogonal} {Series} {Corresponding} to {Nonselfadjoint} {Sturm-Liouville} {Operator} with {Discontinuous} {Coefficients}},
journal = {Publications de l'Institut Math\'ematique},
pages = {129 },
publisher = {mathdoc},
volume = {_N_S_39},
number = {53},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a17/}
}
TY - JOUR AU - Nebojša L. Lažetić TI - On the Convergence of Biorthogonal Series Corresponding to Nonselfadjoint Sturm-Liouville Operator with Discontinuous Coefficients JO - Publications de l'Institut Mathématique PY - 1986 SP - 129 VL - _N_S_39 IS - 53 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a17/ LA - en ID - PIM_1986_N_S_39_53_a17 ER -
%0 Journal Article %A Nebojša L. Lažetić %T On the Convergence of Biorthogonal Series Corresponding to Nonselfadjoint Sturm-Liouville Operator with Discontinuous Coefficients %J Publications de l'Institut Mathématique %D 1986 %P 129 %V _N_S_39 %N 53 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a17/ %G en %F PIM_1986_N_S_39_53_a17
Nebojša L. Lažetić. On the Convergence of Biorthogonal Series Corresponding to Nonselfadjoint Sturm-Liouville Operator with Discontinuous Coefficients. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 129 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a17/