Noncommutative Valuation Rings
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 83

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Noncommutative valuation rings are duo rings: Every right ideal is a left ideal and conversely. Properties of noncommutative valuation rings are compared to those of commutative valuation rings. Noncommutative valuatiun rings are integrally closed. A noncommutative valuation rings has all the properties of a commutative valuation ring if all its prime ideals are invariant.
Classification : 16A09
@article{PIM_1986_N_S_39_53_a12,
     author = {Elbert M. Pirtle},
     title = {Noncommutative {Valuation} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {83 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a12/}
}
TY  - JOUR
AU  - Elbert M. Pirtle
TI  - Noncommutative Valuation Rings
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 83 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a12/
LA  - en
ID  - PIM_1986_N_S_39_53_a12
ER  - 
%0 Journal Article
%A Elbert M. Pirtle
%T Noncommutative Valuation Rings
%J Publications de l'Institut Mathématique
%D 1986
%P 83 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a12/
%G en
%F PIM_1986_N_S_39_53_a12
Elbert M. Pirtle. Noncommutative Valuation Rings. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 83 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a12/