Noncommutative Valuation Rings
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 83 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Noncommutative valuation rings are duo rings: Every right ideal is a left ideal and conversely. Properties of noncommutative valuation rings are compared to those of commutative valuation rings. Noncommutative valuatiun rings are integrally closed. A noncommutative valuation rings has all the properties of a commutative valuation ring if all its prime ideals are invariant.
Classification : 16A09
@article{PIM_1986_N_S_39_53_a12,
     author = {Elbert M. Pirtle},
     title = {Noncommutative {Valuation} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {83 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a12/}
}
TY  - JOUR
AU  - Elbert M. Pirtle
TI  - Noncommutative Valuation Rings
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 83 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a12/
LA  - en
ID  - PIM_1986_N_S_39_53_a12
ER  - 
%0 Journal Article
%A Elbert M. Pirtle
%T Noncommutative Valuation Rings
%J Publications de l'Institut Mathématique
%D 1986
%P 83 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a12/
%G en
%F PIM_1986_N_S_39_53_a12
Elbert M. Pirtle. Noncommutative Valuation Rings. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 83 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a12/