Extending Derivations and Endomorphisms to Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 79 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We treat the problem of extending derivations and endomorphisms of a given ring $R$ to a skew polynomial ring $R[x,f,d]$ over $R$. As an application we obtain the general conditions for the existence of such rings in finitely many variables over $R$. We also prove that under suitable conditions, the $d$ (or the $f$)-simplicity of $R$ implies the $f$-simplicity of $R[x,f,d]$.
Classification : 16A05
@article{PIM_1986_N_S_39_53_a11,
     author = {Michael G. Voskoglou},
     title = {Extending {Derivations} and {Endomorphisms} to {Skew} {Polynomial} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {79 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a11/}
}
TY  - JOUR
AU  - Michael G. Voskoglou
TI  - Extending Derivations and Endomorphisms to Skew Polynomial Rings
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 79 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a11/
LA  - en
ID  - PIM_1986_N_S_39_53_a11
ER  - 
%0 Journal Article
%A Michael G. Voskoglou
%T Extending Derivations and Endomorphisms to Skew Polynomial Rings
%J Publications de l'Institut Mathématique
%D 1986
%P 79 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a11/
%G en
%F PIM_1986_N_S_39_53_a11
Michael G. Voskoglou. Extending Derivations and Endomorphisms to Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 79 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a11/