On the Minimal Distance of the Zeros of a Polynomial
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 35 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $ p(x)= \sum_{\nu=0}^na_\nu x^\nu,\quad (a_\nu\in C,\enskip a_n\neq 0) $ be a complex polynominal whose zeros $x_1,\dots,x_n$ are mutually distinct. In this paper we give a method of finding some positive lower bounds of $ \min_{i\neq j}|x_i-x_j|. $
Classification : 12D10 26C10 30C15
@article{PIM_1985_N_S_38_52_a6,
     author = {Slavi\v{s}a B. Pre\v{s}i\'c},
     title = {On the {Minimal} {Distance} of the {Zeros} of a {Polynomial}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {35 },
     publisher = {mathdoc},
     volume = {_N_S_38},
     number = {52},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a6/}
}
TY  - JOUR
AU  - Slaviša B. Prešić
TI  - On the Minimal Distance of the Zeros of a Polynomial
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 35 
VL  - _N_S_38
IS  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a6/
LA  - en
ID  - PIM_1985_N_S_38_52_a6
ER  - 
%0 Journal Article
%A Slaviša B. Prešić
%T On the Minimal Distance of the Zeros of a Polynomial
%J Publications de l'Institut Mathématique
%D 1985
%P 35 
%V _N_S_38
%N 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a6/
%G en
%F PIM_1985_N_S_38_52_a6
Slaviša B. Prešić. On the Minimal Distance of the Zeros of a Polynomial. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 35 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a6/