On the Minimal Distance of the Zeros of a Polynomial
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 35
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let
$
p(x)= \sum_{\nu=0}^na_\nu x^\nu,\quad (a_\nu\in C,\enskip a_n\neq 0)
$
be a complex polynominal whose zeros $x_1,\dots,x_n$ are mutually distinct.
In this paper we give a method of finding some positive lower bounds of
$
\min_{i\neq j}|x_i-x_j|.
$
Classification :
12D10 26C10 30C15
@article{PIM_1985_N_S_38_52_a6,
author = {Slavi\v{s}a B. Pre\v{s}i\'c},
title = {On the {Minimal} {Distance} of the {Zeros} of a {Polynomial}},
journal = {Publications de l'Institut Math\'ematique},
pages = {35 },
publisher = {mathdoc},
volume = {_N_S_38},
number = {52},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a6/}
}
Slaviša B. Prešić. On the Minimal Distance of the Zeros of a Polynomial. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 35 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a6/