On Spectrum and Per-spectrum of Graphs
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 31

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We show that spectrum and per-spectrum of a graph $G$ is $[x_1,\dots,x_n]$ and $[ix_1,\dots,ix_n]$, respectively,, iff $G$ is a bipartite graph without cycles of length $k$, $k=0\pmod4$.
Classification : 05C50
@article{PIM_1985_N_S_38_52_a5,
     author = {Mieczyslaw Borowiecki},
     title = {On {Spectrum} and {Per-spectrum} of {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     publisher = {mathdoc},
     volume = {_N_S_38},
     number = {52},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/}
}
TY  - JOUR
AU  - Mieczyslaw Borowiecki
TI  - On Spectrum and Per-spectrum of Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 31 
VL  - _N_S_38
IS  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/
LA  - en
ID  - PIM_1985_N_S_38_52_a5
ER  - 
%0 Journal Article
%A Mieczyslaw Borowiecki
%T On Spectrum and Per-spectrum of Graphs
%J Publications de l'Institut Mathématique
%D 1985
%P 31 
%V _N_S_38
%N 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/
%G en
%F PIM_1985_N_S_38_52_a5
Mieczyslaw Borowiecki. On Spectrum and Per-spectrum of Graphs. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/