On Spectrum and Per-spectrum of Graphs
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 31
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We show that spectrum and per-spectrum of a graph $G$ is
$[x_1,\dots,x_n]$ and $[ix_1,\dots,ix_n]$, respectively,, iff $G$ is a
bipartite graph without cycles of length $k$, $k=0\pmod4$.
Classification :
05C50
@article{PIM_1985_N_S_38_52_a5,
author = {Mieczyslaw Borowiecki},
title = {On {Spectrum} and {Per-spectrum} of {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {31 },
publisher = {mathdoc},
volume = {_N_S_38},
number = {52},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/}
}
Mieczyslaw Borowiecki. On Spectrum and Per-spectrum of Graphs. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/