On Spectrum and Per-spectrum of Graphs
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 31
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We show that spectrum and per-spectrum of a graph $G$ is
$[x_1,\dots,x_n]$ and $[ix_1,\dots,ix_n]$, respectively,, iff $G$ is a
bipartite graph without cycles of length $k$, $k=0\pmod4$.
Classification :
05C50
@article{PIM_1985_N_S_38_52_a5,
author = {Mieczyslaw Borowiecki},
title = {On {Spectrum} and {Per-spectrum} of {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {31 },
year = {1985},
volume = {_N_S_38},
number = {52},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/}
}
Mieczyslaw Borowiecki. On Spectrum and Per-spectrum of Graphs. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/