On Spectrum and Per-spectrum of Graphs
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 31 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We show that spectrum and per-spectrum of a graph $G$ is $[x_1,\dots,x_n]$ and $[ix_1,\dots,ix_n]$, respectively,, iff $G$ is a bipartite graph without cycles of length $k$, $k=0\pmod4$.
Classification : 05C50
@article{PIM_1985_N_S_38_52_a5,
     author = {Mieczyslaw Borowiecki},
     title = {On {Spectrum} and {Per-spectrum} of {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     publisher = {mathdoc},
     volume = {_N_S_38},
     number = {52},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/}
}
TY  - JOUR
AU  - Mieczyslaw Borowiecki
TI  - On Spectrum and Per-spectrum of Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 31 
VL  - _N_S_38
IS  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/
LA  - en
ID  - PIM_1985_N_S_38_52_a5
ER  - 
%0 Journal Article
%A Mieczyslaw Borowiecki
%T On Spectrum and Per-spectrum of Graphs
%J Publications de l'Institut Mathématique
%D 1985
%P 31 
%V _N_S_38
%N 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/
%G en
%F PIM_1985_N_S_38_52_a5
Mieczyslaw Borowiecki. On Spectrum and Per-spectrum of Graphs. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a5/