An Application of the Ruscheweyh Derivatives II
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 99
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We introduce the class $R(\alpha)$ of functions of the form
$
f(z)= z- \sum_{k=2}^\infty a_kz^k \qquad (a_k\geq 0)
$
satisfying the condition
$
\text{Re}\{D^{\alpha+1}f(z)/D^\alpha f(z)\}>\alpha/(\alpha+1)
$
for some $(\alpha\geq 0)$ and for all $z\in U=\{z: |z| 1\}$, where
$D^\alpha f(z)$ denotes the Hadamard product of $z/(1-z)^{\alpha+1}$ and
$f(z)$. The object of the present paper is to prove some distortion and
closure theorems for functions $f(z)$ in $R(\alpha)$, and to give the result
for the modified Hadamard product of functions $f(z)$ belonging to the class
$R(\alpha)$. Furthermore, we determine the radii of starlikeness and
convexity of functions $f(z)$ in the class $R(\alpha)$.
Classification :
26A24 30C45
@article{PIM_1985_N_S_38_52_a14,
author = {Shigeyoshi Owa},
title = {An {Application} of the {Ruscheweyh} {Derivatives} {II}},
journal = {Publications de l'Institut Math\'ematique},
pages = {99 },
year = {1985},
volume = {_N_S_38},
number = {52},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a14/}
}
Shigeyoshi Owa. An Application of the Ruscheweyh Derivatives II. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 99 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a14/