On Finite-element Simple Extensions of a Countable Collection of Countable Groupoids
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 65
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Belkin and Gorbunov [2] showed that any two finite
groupoids can be imbedded into a finite simple groupoid. We prove here a
stronger result: Any countable collection $\{A_i\}_{i\in I}$ of countable
grupoids can be embedded into a simple groupoid $K(\bigcup_{i\in I} A_i)$
such that $K(\bigcup_{i\in I} A_i)-\bigcup_{i\in I}A_i$ contains only a
single element which generates the whole groupoid.
Classification :
20L05
@article{PIM_1985_N_S_38_52_a10,
author = {Sin-Min Lee},
title = {On {Finite-element} {Simple} {Extensions} of a {Countable} {Collection} of {Countable} {Groupoids}},
journal = {Publications de l'Institut Math\'ematique},
pages = {65 },
publisher = {mathdoc},
volume = {_N_S_38},
number = {52},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a10/}
}
TY - JOUR AU - Sin-Min Lee TI - On Finite-element Simple Extensions of a Countable Collection of Countable Groupoids JO - Publications de l'Institut Mathématique PY - 1985 SP - 65 VL - _N_S_38 IS - 52 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a10/ LA - en ID - PIM_1985_N_S_38_52_a10 ER -
Sin-Min Lee. On Finite-element Simple Extensions of a Countable Collection of Countable Groupoids. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 65 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a10/