On Finite-element Simple Extensions of a Countable Collection of Countable Groupoids
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 65 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Belkin and Gorbunov [2] showed that any two finite groupoids can be imbedded into a finite simple groupoid. We prove here a stronger result: Any countable collection $\{A_i\}_{i\in I}$ of countable grupoids can be embedded into a simple groupoid $K(\bigcup_{i\in I} A_i)$ such that $K(\bigcup_{i\in I} A_i)-\bigcup_{i\in I}A_i$ contains only a single element which generates the whole groupoid.
Classification : 20L05
@article{PIM_1985_N_S_38_52_a10,
     author = {Sin-Min Lee},
     title = {On {Finite-element} {Simple} {Extensions} of a {Countable} {Collection} of {Countable} {Groupoids}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {65 },
     publisher = {mathdoc},
     volume = {_N_S_38},
     number = {52},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a10/}
}
TY  - JOUR
AU  - Sin-Min Lee
TI  - On Finite-element Simple Extensions of a Countable Collection of Countable Groupoids
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 65 
VL  - _N_S_38
IS  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a10/
LA  - en
ID  - PIM_1985_N_S_38_52_a10
ER  - 
%0 Journal Article
%A Sin-Min Lee
%T On Finite-element Simple Extensions of a Countable Collection of Countable Groupoids
%J Publications de l'Institut Mathématique
%D 1985
%P 65 
%V _N_S_38
%N 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a10/
%G en
%F PIM_1985_N_S_38_52_a10
Sin-Min Lee. On Finite-element Simple Extensions of a Countable Collection of Countable Groupoids. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 65 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a10/