First Order Classes of Groups Having no Groups With a Given Property
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 51
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A result of Miller [8], that there exists a finitely
axiomatizable theory having no nontrivial models with isolvable word
problem, is generalized. It is proved here that for every strong
hereditary property $P$ of $fp$ group there exist a finitely
axiomatizable first-order theory $\Cal I(P)$ having no nontrivial
models that enjoy $P$.
Classification :
20F10 03C65
@article{PIM_1985_N_S_37_51_a9,
author = {Nata\v{s}a Bo\v{z}ovi\'c},
title = {First {Order} {Classes} of {Groups} {Having} no {Groups} {With} a {Given} {Property}},
journal = {Publications de l'Institut Math\'ematique},
pages = {51 },
year = {1985},
volume = {_N_S_37},
number = {51},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a9/}
}
Nataša Božović. First Order Classes of Groups Having no Groups With a Given Property. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 51 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a9/