First Order Classes of Groups Having no Groups With a Given Property
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 51 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A result of Miller [8], that there exists a finitely axiomatizable theory having no nontrivial models with isolvable word problem, is generalized. It is proved here that for every strong hereditary property $P$ of $fp$ group there exist a finitely axiomatizable first-order theory $\Cal I(P)$ having no nontrivial models that enjoy $P$.
Classification : 20F10 03C65
@article{PIM_1985_N_S_37_51_a9,
     author = {Nata\v{s}a Bo\v{z}ovi\'c},
     title = {First {Order} {Classes} of {Groups} {Having} no {Groups} {With} a {Given} {Property}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {51 },
     publisher = {mathdoc},
     volume = {_N_S_37},
     number = {51},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a9/}
}
TY  - JOUR
AU  - Nataša Božović
TI  - First Order Classes of Groups Having no Groups With a Given Property
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 51 
VL  - _N_S_37
IS  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a9/
LA  - en
ID  - PIM_1985_N_S_37_51_a9
ER  - 
%0 Journal Article
%A Nataša Božović
%T First Order Classes of Groups Having no Groups With a Given Property
%J Publications de l'Institut Mathématique
%D 1985
%P 51 
%V _N_S_37
%N 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a9/
%G en
%F PIM_1985_N_S_37_51_a9
Nataša Božović. First Order Classes of Groups Having no Groups With a Given Property. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 51 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a9/