Algorithmic Problems Related to the Direct Prodict of Groups
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 43
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Algorithmic unrecognizability of every group property from
classes $\Cal K'_1$ and $\Cal K'_2$ of properties (of $fp$ groups)
related to the direct product of groups, is proved. $\Cal K'_1$ is the
class of all properties of the form ``being a direct product of groups
with Markov properties''. $\Cal K_2$ is the class of properties
$P=S\cup T$, where $S$ is a property of universal $fp$ groups
only and $T$ is a property of nonuniversal groups, such that there
exists a positive integer $m$ for which
$
(\forall G\in S)d(G)\not=m\vee(\forall G\in T)d(G)\not=m,
$
where $d(G)=\sup\{k\mid(\exists H_1,\ldots, H_k\not=\{1\})(G\cong
H_1\times\cdots\times H_k)\}$.
Classification :
20F10
@article{PIM_1985_N_S_37_51_a8,
author = {Nata\v{s}a Bo\v{z}ovi\'c and Sava Krsti\'c},
title = {Algorithmic {Problems} {Related} to the {Direct} {Prodict} of {Groups}},
journal = {Publications de l'Institut Math\'ematique},
pages = {43 },
year = {1985},
volume = {_N_S_37},
number = {51},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a8/}
}
Nataša Božović; Sava Krstić. Algorithmic Problems Related to the Direct Prodict of Groups. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 43 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a8/