Simple Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 37 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We treat two questions. First we give the general conditions for the existence of skew polynomial rings in finitely many variables over a given ring $R$ (special cases of such rings are well, known, typifield by the $n$-th Weyl Algebras) and second we obtain the necesary and sufficient conditions for the simplicity of such rings. Note that Amitsur [1] obtained conditions under which an Ore extension $R[x,d]$ over a simple ring $R$ is simple, while more recently Jordan [6] obtained such conditions if $R$ is $d$-simple.
Classification : 16A05
@article{PIM_1985_N_S_37_51_a7,
     author = {Michael G. Voskoglou},
     title = {Simple {Skew} {Polynomial} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {37 },
     publisher = {mathdoc},
     volume = {_N_S_37},
     number = {51},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a7/}
}
TY  - JOUR
AU  - Michael G. Voskoglou
TI  - Simple Skew Polynomial Rings
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 37 
VL  - _N_S_37
IS  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a7/
LA  - en
ID  - PIM_1985_N_S_37_51_a7
ER  - 
%0 Journal Article
%A Michael G. Voskoglou
%T Simple Skew Polynomial Rings
%J Publications de l'Institut Mathématique
%D 1985
%P 37 
%V _N_S_37
%N 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a7/
%G en
%F PIM_1985_N_S_37_51_a7
Michael G. Voskoglou. Simple Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 37 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a7/