On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 33 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For each cardinal number $\alpha\geq 1$, we construct two types of grupoids $\langle X_\alpha;\circ\rangle$ and $\langle X_\alpha; *\rangle$ which are hereditarily simple and have subgrupoids of all small orded. If $\alpha\geq \aleph_0$, we show that they both admit only discrete topology to become topological grupoids. An application of the grupoid $\langle X_\alpha; *\rangle$ in the theory of non-associative rings is indicated.
Classification : 20L05 17E05
@article{PIM_1985_N_S_37_51_a6,
     author = {Sin-Min Lee},
     title = {On {Algebras} all of {Whose} {Subalgebras} are {Simple;} {Some} {Solutions} of {Plonka's} {Problem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {33 },
     publisher = {mathdoc},
     volume = {_N_S_37},
     number = {51},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/}
}
TY  - JOUR
AU  - Sin-Min Lee
TI  - On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 33 
VL  - _N_S_37
IS  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/
LA  - en
ID  - PIM_1985_N_S_37_51_a6
ER  - 
%0 Journal Article
%A Sin-Min Lee
%T On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem
%J Publications de l'Institut Mathématique
%D 1985
%P 33 
%V _N_S_37
%N 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/
%G en
%F PIM_1985_N_S_37_51_a6
Sin-Min Lee. On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 33 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/