On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 33

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For each cardinal number $\alpha\geq 1$, we construct two types of grupoids $\langle X_\alpha;\circ\rangle$ and $\langle X_\alpha; *\rangle$ which are hereditarily simple and have subgrupoids of all small orded. If $\alpha\geq \aleph_0$, we show that they both admit only discrete topology to become topological grupoids. An application of the grupoid $\langle X_\alpha; *\rangle$ in the theory of non-associative rings is indicated.
Classification : 20L05 17E05
@article{PIM_1985_N_S_37_51_a6,
     author = {Sin-Min Lee},
     title = {On {Algebras} all of {Whose} {Subalgebras} are {Simple;} {Some} {Solutions} of {Plonka's} {Problem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {33 },
     publisher = {mathdoc},
     volume = {_N_S_37},
     number = {51},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/}
}
TY  - JOUR
AU  - Sin-Min Lee
TI  - On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 33 
VL  - _N_S_37
IS  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/
LA  - en
ID  - PIM_1985_N_S_37_51_a6
ER  - 
%0 Journal Article
%A Sin-Min Lee
%T On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem
%J Publications de l'Institut Mathématique
%D 1985
%P 33 
%V _N_S_37
%N 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/
%G en
%F PIM_1985_N_S_37_51_a6
Sin-Min Lee. On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 33 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/