On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 33
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For each cardinal number $\alpha\geq 1$, we construct two
types of grupoids $\langle X_\alpha;\circ\rangle$ and $\langle
X_\alpha; *\rangle$ which are hereditarily simple and have subgrupoids
of all small orded. If $\alpha\geq \aleph_0$, we show that they both
admit only discrete topology to become topological grupoids. An
application of the grupoid $\langle X_\alpha; *\rangle$ in the theory
of non-associative rings is indicated.
Classification :
20L05 17E05
@article{PIM_1985_N_S_37_51_a6,
author = {Sin-Min Lee},
title = {On {Algebras} all of {Whose} {Subalgebras} are {Simple;} {Some} {Solutions} of {Plonka's} {Problem}},
journal = {Publications de l'Institut Math\'ematique},
pages = {33 },
year = {1985},
volume = {_N_S_37},
number = {51},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/}
}
Sin-Min Lee. On Algebras all of Whose Subalgebras are Simple; Some Solutions of Plonka's Problem. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 33 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a6/