Model Theory for Lam Logic
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 17 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In [3] Keisler introduced several probability logics $(L_{\Cal AM}, L(\int)_{w1w}$, etc.) and developed model theory for them together with Hoover. We introduce $L_{\Cal AM}$ which, instead of probability measure, has a $\sigma$-finite one and give a method how to transfer results from $L_{\Cal AP}$ to our logic.
Classification : 03C70 03C90
@article{PIM_1985_N_S_37_51_a2,
     author = {Miodrag Ra\v{s}kovi\'c},
     title = {Model {Theory} for {Lam} {Logic}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {17 },
     publisher = {mathdoc},
     volume = {_N_S_37},
     number = {51},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a2/}
}
TY  - JOUR
AU  - Miodrag Rašković
TI  - Model Theory for Lam Logic
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 17 
VL  - _N_S_37
IS  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a2/
LA  - en
ID  - PIM_1985_N_S_37_51_a2
ER  - 
%0 Journal Article
%A Miodrag Rašković
%T Model Theory for Lam Logic
%J Publications de l'Institut Mathématique
%D 1985
%P 17 
%V _N_S_37
%N 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a2/
%G en
%F PIM_1985_N_S_37_51_a2
Miodrag Rašković. Model Theory for Lam Logic. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a2/