Model Theory for Lam Logic
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 17
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In [3] Keisler introduced several probability logics
$(L_{\Cal AM}, L(\int)_{w1w}$, etc.) and developed model theory for
them together with Hoover. We introduce $L_{\Cal AM}$ which, instead of
probability measure, has a $\sigma$-finite one and give a method how to
transfer results from $L_{\Cal AP}$ to our logic.
Classification :
03C70 03C90
@article{PIM_1985_N_S_37_51_a2,
author = {Miodrag Ra\v{s}kovi\'c},
title = {Model {Theory} for {Lam} {Logic}},
journal = {Publications de l'Institut Math\'ematique},
pages = {17 },
year = {1985},
volume = {_N_S_37},
number = {51},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a2/}
}
Miodrag Rašković. Model Theory for Lam Logic. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a2/