Bases From Orthogonal Subspaces Obtained by Evaluation of the Reproducing Kernel
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 93
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Every inner operator function $\theta$ with values in
$B(E,E)$, $E$ -- a fixed (separable) Hilbert space, determines a
co-invariant subspace $H(\theta)$ of the operator of multiplication by
$z$ in the Hardy space $H^2_E$. ``Evaluating'' the reproducing kernel
of $\,H(\theta)$ at ``U-points'' of the function $\theta$ ($U$ is
unitary operator) we obtain operator functions $\gamma_t(2)$ and
subspaces $\gamma_tE$. The main result of the paper is: Let the
operator $I-\theta(z)U^*$ have a bounded inverse for every $z$ $|z|1$.
If $(1-r)^{-1}\Re\varphi(rt)$ for definition of $\varphi$ see (1) is
uniform bounded in $r$, $0łeq r1$, for all $t$, $|t|=1$, except for a
countable set, then the familly of subspaces $\gamma_tE$ is orthogonal
and complete in $H(\theta)$. This generalizes an analogous result of
Clark [3] in the scalar case.
Classification :
46E40
@article{PIM_1985_N_S_37_51_a17,
author = {Du\v{s}an Georgijevi\'c},
title = {Bases {From} {Orthogonal} {Subspaces} {Obtained} by {Evaluation} of the {Reproducing} {Kernel}},
journal = {Publications de l'Institut Math\'ematique},
pages = {93 },
year = {1985},
volume = {_N_S_37},
number = {51},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a17/}
}
TY - JOUR AU - Dušan Georgijević TI - Bases From Orthogonal Subspaces Obtained by Evaluation of the Reproducing Kernel JO - Publications de l'Institut Mathématique PY - 1985 SP - 93 VL - _N_S_37 IS - 51 UR - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a17/ LA - en ID - PIM_1985_N_S_37_51_a17 ER -
Dušan Georgijević. Bases From Orthogonal Subspaces Obtained by Evaluation of the Reproducing Kernel. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 93 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a17/