On the Absolute Summability of Lacunary Fourier Series
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 89 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $f\in L[-\pi,\pi]$ and let its Foirer Series $\sigma(f)$ be lacynary. The absolute convergence of $\sigma(f)$ when $f$ satisfies Lipschitz condition of order $\alpha$, $0\alpha1$, only at a point and when $\{n_k\}$ satisfies the gap condition $n_{k+1}-n_k\geq An_K^\beta k^\gamma$ ($0\beta1$, $\gamma\geq 0$) is obtained by Patadian and Shah when $\alpha\beta+\alpha\gamma>(1-\beta)/2$. Here we study the absolute summability of $\sigma(f)$ when $\alpha\beta+\alpha\gamma\leq(1-\beta)/2$.
Classification : 42A28
@article{PIM_1985_N_S_37_51_a16,
     author = {N.V. Patel and V.M. Shah},
     title = {On the {Absolute} {Summability} of {Lacunary} {Fourier} {Series}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {89 },
     publisher = {mathdoc},
     volume = {_N_S_37},
     number = {51},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a16/}
}
TY  - JOUR
AU  - N.V. Patel
AU  - V.M. Shah
TI  - On the Absolute Summability of Lacunary Fourier Series
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 89 
VL  - _N_S_37
IS  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a16/
LA  - en
ID  - PIM_1985_N_S_37_51_a16
ER  - 
%0 Journal Article
%A N.V. Patel
%A V.M. Shah
%T On the Absolute Summability of Lacunary Fourier Series
%J Publications de l'Institut Mathématique
%D 1985
%P 89 
%V _N_S_37
%N 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a16/
%G en
%F PIM_1985_N_S_37_51_a16
N.V. Patel; V.M. Shah. On the Absolute Summability of Lacunary Fourier Series. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 89 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a16/