On the Absolute Summability of Lacunary Fourier Series
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 89
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $f\in L[-\pi,\pi]$ and let its Foirer Series $\sigma(f)$
be lacynary. The absolute convergence of $\sigma(f)$ when $f$
satisfies Lipschitz condition of order $\alpha$, $0\alpha1$, only at
a point and when $\{n_k\}$ satisfies the gap condition
$n_{k+1}-n_k\geq An_K^\beta k^\gamma$ ($0\beta1$, $\gamma\geq 0$) is
obtained by Patadian and Shah when
$\alpha\beta+\alpha\gamma>(1-\beta)/2$. Here we study the absolute
summability of $\sigma(f)$ when
$\alpha\beta+\alpha\gamma\leq(1-\beta)/2$.
Classification :
42A28
@article{PIM_1985_N_S_37_51_a16,
author = {N.V. Patel and V.M. Shah},
title = {On the {Absolute} {Summability} of {Lacunary} {Fourier} {Series}},
journal = {Publications de l'Institut Math\'ematique},
pages = {89 },
year = {1985},
volume = {_N_S_37},
number = {51},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a16/}
}
N.V. Patel; V.M. Shah. On the Absolute Summability of Lacunary Fourier Series. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 89 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a16/