Some Remarks on M-convexity and Best Approximation
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 85 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

To study the uniqueness of best approximation properties for $M$-convex subsets of metric spaces, strictly $M$-convex and uniformly $M$-convex metric spaces were introduced in [2] by using the notion of $M$-convexity in metric spaces. In this note it is shown that strictly $M$-convex and uniformly $M$-convex metric spaces do not serve any fruitful purpose for the uniqueness of solutions of best approximation problems (the very purpose for which these spaces were introduced) as these prove the uniqueness of best approximation problems only when they are Mengerian; however, Mengerian spaces in the sense of [2] do not exist. We also answer some of the problems raised in [2] and show that some of the results proved in [2] are incorrect.
Classification : 41A52 41A50
@article{PIM_1985_N_S_37_51_a15,
     author = {T. D. Narang},
     title = {Some {Remarks} on {M-convexity} and {Best} {Approximation}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {85 },
     publisher = {mathdoc},
     volume = {_N_S_37},
     number = {51},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a15/}
}
TY  - JOUR
AU  - T. D. Narang
TI  - Some Remarks on M-convexity and Best Approximation
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 85 
VL  - _N_S_37
IS  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a15/
LA  - en
ID  - PIM_1985_N_S_37_51_a15
ER  - 
%0 Journal Article
%A T. D. Narang
%T Some Remarks on M-convexity and Best Approximation
%J Publications de l'Institut Mathématique
%D 1985
%P 85 
%V _N_S_37
%N 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a15/
%G en
%F PIM_1985_N_S_37_51_a15
T. D. Narang. Some Remarks on M-convexity and Best Approximation. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 85 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a15/