On the Maximum and Minimum Chain Conditions for the "largeness" Ordering on the Class of Groups
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 57
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In previous papers the autor has defined a quasi-order
$\preceq$ on the class of groups (the``largeness'' ordering). One can
then define the {\it height} of group, and also define what it means
for a group to satisfy max-$\preceq$ or min-$\preceq$. A natural
question is whether the finiteness conditions max-$\preceq$,
min-$\preceq$, ``having finite height'' are extension closed. It is
shown here that the answer is ``no'' for all three properties: there is
a group which is a split extension of one group of height 1 by another
group of height 1, and which does not satisfy max-$\preceq$ or
min-$\preceq$.
Classification :
20F22 20E22
@article{PIM_1985_N_S_37_51_a10,
author = {S.J. Pride},
title = {On the {Maximum} and {Minimum} {Chain} {Conditions} for the "largeness" {Ordering} on the {Class} of {Groups}},
journal = {Publications de l'Institut Math\'ematique},
pages = {57 },
year = {1985},
volume = {_N_S_37},
number = {51},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a10/}
}
TY - JOUR AU - S.J. Pride TI - On the Maximum and Minimum Chain Conditions for the "largeness" Ordering on the Class of Groups JO - Publications de l'Institut Mathématique PY - 1985 SP - 57 VL - _N_S_37 IS - 51 UR - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a10/ LA - en ID - PIM_1985_N_S_37_51_a10 ER -
S.J. Pride. On the Maximum and Minimum Chain Conditions for the "largeness" Ordering on the Class of Groups. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 57 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a10/