Semantics for Some Intermediate Logics
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 7 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

We give semantics for intermediate logics of the form $H+\vee S$, where $\vee S$ is the schema $ \underset{(i,j)\in S}\to\vee(A_i\to A_j) $ and $S$ is a nonempty subset of $\{1,\ldots,n\}^2$. It is proved that such a logic is complete with respect to the class of Kripke frames $(X,R)$ which satisfy the universal closure of the formula $\underset{(i,j),(k,i)\in S}\to\vee x_{ij}Rx_{ki} $
Classification : 03B55
@article{PIM_1985_N_S_37_51_a1,
     author = {Milan Bo\v{z}i\'c},
     title = {Semantics for {Some} {Intermediate} {Logics}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {7 },
     year = {1985},
     volume = {_N_S_37},
     number = {51},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a1/}
}
TY  - JOUR
AU  - Milan Božić
TI  - Semantics for Some Intermediate Logics
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 7 
VL  - _N_S_37
IS  - 51
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a1/
LA  - en
ID  - PIM_1985_N_S_37_51_a1
ER  - 
%0 Journal Article
%A Milan Božić
%T Semantics for Some Intermediate Logics
%J Publications de l'Institut Mathématique
%D 1985
%P 7 
%V _N_S_37
%N 51
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a1/
%G en
%F PIM_1985_N_S_37_51_a1
Milan Božić. Semantics for Some Intermediate Logics. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 7 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a1/