Semantics for Some Intermediate Logics
Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 7
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give semantics for intermediate logics of the form
$H+\vee S$, where $\vee S$ is the schema
$
\underset{(i,j)\in S}\to\vee(A_i\to A_j)
$
and $S$ is a nonempty subset of $\{1,\ldots,n\}^2$. It is proved that such a logic is complete with respect
to the class of Kripke frames $(X,R)$ which satisfy the universal
closure of the formula
$\underset{(i,j),(k,i)\in S}\to\vee x_{ij}Rx_{ki}
$
Classification :
03B55
@article{PIM_1985_N_S_37_51_a1,
author = {Milan Bo\v{z}i\'c},
title = {Semantics for {Some} {Intermediate} {Logics}},
journal = {Publications de l'Institut Math\'ematique},
pages = {7 },
publisher = {mathdoc},
volume = {_N_S_37},
number = {51},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a1/}
}
Milan Božić. Semantics for Some Intermediate Logics. Publications de l'Institut Mathématique, _N_S_37 (1985) no. 51, p. 7 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_37_51_a1/