Graphs with the Reduced Spectrum in the Unit Interval
Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 17 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

By the reduced spectrum (r.s.) of a finite connected graph, we mean the set of all its eigenvalues with the maximal and the minimal eigenvalues excluded. In this paper we characterize all finite connected graphs having at least one positive and at least one negative eigenvalue in their reduced spectrum, whose r.s. lies in the unit interval $[-1,1)$.
Classification : 05C50 47A10
@article{PIM_1984_N_S_36_50_a3,
     author = {Aleksandar Torga\v{s}ev},
     title = {Graphs with the {Reduced} {Spectrum} in the {Unit} {Interval}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {17 },
     publisher = {mathdoc},
     volume = {_N_S_36},
     number = {50},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a3/}
}
TY  - JOUR
AU  - Aleksandar Torgašev
TI  - Graphs with the Reduced Spectrum in the Unit Interval
JO  - Publications de l'Institut Mathématique
PY  - 1984
SP  - 17 
VL  - _N_S_36
IS  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a3/
LA  - en
ID  - PIM_1984_N_S_36_50_a3
ER  - 
%0 Journal Article
%A Aleksandar Torgašev
%T Graphs with the Reduced Spectrum in the Unit Interval
%J Publications de l'Institut Mathématique
%D 1984
%P 17 
%V _N_S_36
%N 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a3/
%G en
%F PIM_1984_N_S_36_50_a3
Aleksandar Torgašev. Graphs with the Reduced Spectrum in the Unit Interval. Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a3/