On Edge-colorability of Products of Graphs
Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 13
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\chi'(G)$ denote the edge-chromatic number and
$\Delta(G)$ the maximum vertex degree of a graph $G$. A graph $G$ is
said to be {\it of class} 1 if $\chi'(G)=\Delta(G)$ and {\it of class}
2 otherwise. Some sufficient conditions for various graph products (the
Cartesian, lexicographic, tensor and strong product) to be of class 1
are given.
Classification :
05C15 05C70
Keywords: Edge-coloring, Graph products
Keywords: Edge-coloring, Graph products
@article{PIM_1984_N_S_36_50_a2,
author = {Bojan Mohar},
title = {On {Edge-colorability} of {Products} of {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {13 },
publisher = {mathdoc},
volume = {_N_S_36},
number = {50},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a2/}
}
Bojan Mohar. On Edge-colorability of Products of Graphs. Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 13 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a2/