On Edge-colorability of Products of Graphs
Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 13 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\chi'(G)$ denote the edge-chromatic number and $\Delta(G)$ the maximum vertex degree of a graph $G$. A graph $G$ is said to be {\it of class} 1 if $\chi'(G)=\Delta(G)$ and {\it of class} 2 otherwise. Some sufficient conditions for various graph products (the Cartesian, lexicographic, tensor and strong product) to be of class 1 are given.
Classification : 05C15 05C70
Keywords: Edge-coloring, Graph products
@article{PIM_1984_N_S_36_50_a2,
     author = {Bojan Mohar},
     title = {On {Edge-colorability} of {Products} of {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {13 },
     publisher = {mathdoc},
     volume = {_N_S_36},
     number = {50},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a2/}
}
TY  - JOUR
AU  - Bojan Mohar
TI  - On Edge-colorability of Products of Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1984
SP  - 13 
VL  - _N_S_36
IS  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a2/
LA  - en
ID  - PIM_1984_N_S_36_50_a2
ER  - 
%0 Journal Article
%A Bojan Mohar
%T On Edge-colorability of Products of Graphs
%J Publications de l'Institut Mathématique
%D 1984
%P 13 
%V _N_S_36
%N 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a2/
%G en
%F PIM_1984_N_S_36_50_a2
Bojan Mohar. On Edge-colorability of Products of Graphs. Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 13 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a2/