A Note on Inverse-preservations of Regular Open Sets
Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 99 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this note an example is given in order to show that the following lemma is false (Kovačević [3]): If $f:X\to Y$ is an almost-continuous and almost-closed function, then $f^{-1}(V)$ is regular open (resp. regular closed) in $X$ for every regular open (resp. regular closed) set $V$ of $Y$.
Classification : 54C10
@article{PIM_1984_N_S_36_50_a13,
     author = {Takashi Noiri},
     title = {A {Note} on {Inverse-preservations} of {Regular} {Open} {Sets}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {99 },
     publisher = {mathdoc},
     volume = {_N_S_36},
     number = {50},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a13/}
}
TY  - JOUR
AU  - Takashi Noiri
TI  - A Note on Inverse-preservations of Regular Open Sets
JO  - Publications de l'Institut Mathématique
PY  - 1984
SP  - 99 
VL  - _N_S_36
IS  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a13/
LA  - en
ID  - PIM_1984_N_S_36_50_a13
ER  - 
%0 Journal Article
%A Takashi Noiri
%T A Note on Inverse-preservations of Regular Open Sets
%J Publications de l'Institut Mathématique
%D 1984
%P 99 
%V _N_S_36
%N 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a13/
%G en
%F PIM_1984_N_S_36_50_a13
Takashi Noiri. A Note on Inverse-preservations of Regular Open Sets. Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 99 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a13/