A Note on Inverse-preservations of Regular Open Sets
Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 99
In this note an example is given in order to show that the
following lemma is false (Kovačević [3]): If $f:X\to Y$ is an
almost-continuous and almost-closed function, then $f^{-1}(V)$ is
regular open (resp. regular closed) in $X$ for every regular open
(resp. regular closed) set $V$ of $Y$.
Classification :
54C10
@article{PIM_1984_N_S_36_50_a13,
author = {Takashi Noiri},
title = {A {Note} on {Inverse-preservations} of {Regular} {Open} {Sets}},
journal = {Publications de l'Institut Math\'ematique},
pages = {99 },
year = {1984},
volume = {_N_S_36},
number = {50},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a13/}
}
Takashi Noiri. A Note on Inverse-preservations of Regular Open Sets. Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 99 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a13/