A Note on Inverse-preservations of Regular Open Sets
Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 99
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this note an example is given in order to show that the
following lemma is false (Kovačević [3]): If $f:X\to Y$ is an
almost-continuous and almost-closed function, then $f^{-1}(V)$ is
regular open (resp. regular closed) in $X$ for every regular open
(resp. regular closed) set $V$ of $Y$.
Classification :
54C10
@article{PIM_1984_N_S_36_50_a13,
author = {Takashi Noiri},
title = {A {Note} on {Inverse-preservations} of {Regular} {Open} {Sets}},
journal = {Publications de l'Institut Math\'ematique},
pages = {99 },
publisher = {mathdoc},
volume = {_N_S_36},
number = {50},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a13/}
}
Takashi Noiri. A Note on Inverse-preservations of Regular Open Sets. Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 99 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a13/