On the Curvature Collineation in Finsler Space
Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 87 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We define $\bar x^i=x^i+v^i(x)\delta t$ as the $h$-curvature collineation of a Finsler space, supposing that the Lie derivative of Bervald's curvature tensor is equal to zero. Then we prove that every motion and every homothetic transformation admitted in a Finsler space are $H$-curvature collineations. Some special cases are also discussed.
Classification : 53B40
@article{PIM_1984_N_S_36_50_a11,
     author = {Suresh Prasad Singh},
     title = {On the {Curvature} {Collineation} in {Finsler} {Space}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {87 },
     publisher = {mathdoc},
     volume = {_N_S_36},
     number = {50},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a11/}
}
TY  - JOUR
AU  - Suresh Prasad Singh
TI  - On the Curvature Collineation in Finsler Space
JO  - Publications de l'Institut Mathématique
PY  - 1984
SP  - 87 
VL  - _N_S_36
IS  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a11/
LA  - en
ID  - PIM_1984_N_S_36_50_a11
ER  - 
%0 Journal Article
%A Suresh Prasad Singh
%T On the Curvature Collineation in Finsler Space
%J Publications de l'Institut Mathématique
%D 1984
%P 87 
%V _N_S_36
%N 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a11/
%G en
%F PIM_1984_N_S_36_50_a11
Suresh Prasad Singh. On the Curvature Collineation in Finsler Space. Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 87 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a11/