On the Curvature Collineation in Finsler Space
Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 87
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We define $\bar x^i=x^i+v^i(x)\delta t$ as the $h$-curvature
collineation of a Finsler space, supposing that the Lie derivative of
Bervald's curvature tensor is equal to zero. Then we prove that every
motion and every homothetic transformation admitted in a Finsler space
are $H$-curvature collineations. Some special cases are also discussed.
Classification :
53B40
@article{PIM_1984_N_S_36_50_a11,
author = {Suresh Prasad Singh},
title = {On the {Curvature} {Collineation} in {Finsler} {Space}},
journal = {Publications de l'Institut Math\'ematique},
pages = {87 },
publisher = {mathdoc},
volume = {_N_S_36},
number = {50},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a11/}
}
Suresh Prasad Singh. On the Curvature Collineation in Finsler Space. Publications de l'Institut Mathématique, _N_S_36 (1984) no. 50, p. 87 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_36_50_a11/