On a new Subclass of Analytic P-valent Functions
Publications de l'Institut Mathématique, _N_S_35 (1984) no. 49, p. 53
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
There are many classes of analytic and $p$-valent functions
in the unit disk U.N.S. Sohi studied a class $S_p(\alpha)$ of analytic
and $p$-valent functions
$
f(z)= z^p+ \sum_{n=1}^\infty a_{p+n}z^{p+n},\qquad (p\in N)
$
in the unit disk $U$ satisfying the condition
$
|f'(z)/pz^{p-1}-\alpha|\alpha,\qquad (z\in U)
$
for $\alpha >1/2$. In this paper, we consider a new subclass
$S_{p,k}(\alpha)$ of analytic and $p$-valent functions
$
f(z)= z^p+\sum a_{p+n}z^{p+n},\qquad (p\in N)
$
in the unit disk $U$ satisfying the condition
$
łeft|\frac{\Gamma(p+1-k)D^k_z(z)}{\Gamma(p+1)z^{p-k}}\right|\alpha,
\qquad (z\in U)
$
for $01/2$ and $p\in N$, where $D^k_zf(z)$ means the
fractional derivative of order $k$ of $f(z)$. It is the purpose of this
paper to show a distortion theorem, the coefficient estimates and a
convolution theorem for the class $S_{p,k}(\alpha)$. Further we give a
theorem about convex set of functions in the class $S_{p,k}(\alpha)$.
Classification :
26A24
@article{PIM_1984_N_S_35_49_a6,
author = {Shigeyoshi Owa},
title = {On a new {Subclass} of {Analytic} {P-valent} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {53 },
year = {1984},
volume = {_N_S_35},
number = {49},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a6/}
}
Shigeyoshi Owa. On a new Subclass of Analytic P-valent Functions. Publications de l'Institut Mathématique, _N_S_35 (1984) no. 49, p. 53 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a6/