On a new Subclass of Analytic P-valent Functions
Publications de l'Institut Mathématique, _N_S_35 (1984) no. 49, p. 53
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
There are many classes of analytic and $p$-valent functions
in the unit disk U.N.S. Sohi studied a class $S_p(\alpha)$ of analytic
and $p$-valent functions
$
f(z)= z^p+ \sum_{n=1}^\infty a_{p+n}z^{p+n},\qquad (p\in N)
$
in the unit disk $U$ satisfying the condition
$
|f'(z)/pz^{p-1}-\alpha|\alpha,\qquad (z\in U)
$
for $\alpha >1/2$. In this paper, we consider a new subclass
$S_{p,k}(\alpha)$ of analytic and $p$-valent functions
$
f(z)= z^p+\sum a_{p+n}z^{p+n},\qquad (p\in N)
$
in the unit disk $U$ satisfying the condition
$
łeft|\frac{\Gamma(p+1-k)D^k_z(z)}{\Gamma(p+1)z^{p-k}}\right|\alpha,
\qquad (z\in U)
$
for $01/2$ and $p\in N$, where $D^k_zf(z)$ means the
fractional derivative of order $k$ of $f(z)$. It is the purpose of this
paper to show a distortion theorem, the coefficient estimates and a
convolution theorem for the class $S_{p,k}(\alpha)$. Further we give a
theorem about convex set of functions in the class $S_{p,k}(\alpha)$.
Classification :
26A24
@article{PIM_1984_N_S_35_49_a6,
author = {Shigeyoshi Owa},
title = {On a new {Subclass} of {Analytic} {P-valent} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {53 },
publisher = {mathdoc},
volume = {_N_S_35},
number = {49},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a6/}
}
Shigeyoshi Owa. On a new Subclass of Analytic P-valent Functions. Publications de l'Institut Mathématique, _N_S_35 (1984) no. 49, p. 53 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a6/