On Random Variables with the Same Distribution Type as Their Random sum
Publications de l'Institut Mathématique, _N_S_35 (1984) no. 49, p. 161
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\xi_1,\xi_2,\dots,\xi_n,\dots$ be a sequence of
nonnegative, independent, equally distributed random variables with
distribution function $F(x)$ and corresponding Laplace transform
$f(t)$; let $\nu$ be integer-valued random variable independent of
$\xi_n$, $n=1,2,\dots$, $p_n=P(\nu=n)$, $p_0=0$,
$P(s)=\sum_{n=0}^\infty s^np_n$ -- its generating function. In this
paper, solutions $(P,f)$ of the following functional equation are
found:
$
P(f(t))= f(c_\nu t),
$
where $c_\nu$ is a real number
depending on $\nu$.
Classification :
60E99
@article{PIM_1984_N_S_35_49_a21,
author = {Slobodanka Janji\'c},
title = {On {Random} {Variables} with the {Same} {Distribution} {Type} as {Their} {Random} sum},
journal = {Publications de l'Institut Math\'ematique},
pages = {161 },
publisher = {mathdoc},
volume = {_N_S_35},
number = {49},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a21/}
}
TY - JOUR AU - Slobodanka Janjić TI - On Random Variables with the Same Distribution Type as Their Random sum JO - Publications de l'Institut Mathématique PY - 1984 SP - 161 VL - _N_S_35 IS - 49 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a21/ LA - en ID - PIM_1984_N_S_35_49_a21 ER -
Slobodanka Janjić. On Random Variables with the Same Distribution Type as Their Random sum. Publications de l'Institut Mathématique, _N_S_35 (1984) no. 49, p. 161 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a21/