Two Examples of Q-topologies
Publications de l'Institut Mathématique, _N_S_35 (1984) no. 49, p. 157
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A pair $(Y,\tau)$, where $Y$ is an internal set, whereas
$\tau$ is a topology (usually external) on $Y$, is called a
$^*$-topological space if $\tau$ has an internal base. The main example
is $(^*X,\overline\tau)$ where $(X,\tau)$ is a standard topological
space and $\overline\tau$ the topology generated by $^*\tau$. This is
the so called $Q$-topology on $^*X$ induced by $(X,\tau)$, a notion
introduced by A. Robinson in [4]. This note contains negative answers
to some questions of R. W. Button, [1], who asked whether the following
implications
$
\align
(^*X,\overline\tau)\enskip\text{normal}\enskip\Rightarrow
(X,\tau) \enskip\text{normal}\\
(X,\tau)\enskip\text{scattered}\enskip\Rightarrow
(^*X,\overline\tau) \enskip\text{scattered}
\endalign
$
hold in some enlargement.
Classification :
03M05 54J05
@article{PIM_1984_N_S_35_49_a20,
author = {Rade \v{Z}ivaljevi\'c},
title = {Two {Examples} of {Q-topologies}},
journal = {Publications de l'Institut Math\'ematique},
pages = {157 },
publisher = {mathdoc},
volume = {_N_S_35},
number = {49},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a20/}
}
Rade Živaljević. Two Examples of Q-topologies. Publications de l'Institut Mathématique, _N_S_35 (1984) no. 49, p. 157 . http://geodesic.mathdoc.fr/item/PIM_1984_N_S_35_49_a20/