On Fixed Edges of Antitone Self-mappings of Complete Lattices
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 49 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Studying fixed edges we start from a more general notion---p-pairs and p-points proving first that the set of all p-points of an antitone self-mapping of a complete lattice $L$ is a sublattice of $L$. In this way we obtain as a direct consequence J. Klimeš's Fixed edge Theorem and provide an easy proof of his Theorem 2. Besides, this approach sheds much more light on the treated problems. In the sequel (Theorem 2) we examine under which conditions a distinguished pair $(s,t)$ (see Notation) appearing in inconditionally complete posets is a fixed edge. In Theorem 3 the Problem in the text is solved in a special case.
Classification : 06A10
@article{PIM_1983_N_S_34_48_a7,
     author = {Rade M. Daci\'c},
     title = {On {Fixed} {Edges} of {Antitone} {Self-mappings} of {Complete} {Lattices}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {49 },
     publisher = {mathdoc},
     volume = {_N_S_34},
     number = {48},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a7/}
}
TY  - JOUR
AU  - Rade M. Dacić
TI  - On Fixed Edges of Antitone Self-mappings of Complete Lattices
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 49 
VL  - _N_S_34
IS  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a7/
LA  - en
ID  - PIM_1983_N_S_34_48_a7
ER  - 
%0 Journal Article
%A Rade M. Dacić
%T On Fixed Edges of Antitone Self-mappings of Complete Lattices
%J Publications de l'Institut Mathématique
%D 1983
%P 49 
%V _N_S_34
%N 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a7/
%G en
%F PIM_1983_N_S_34_48_a7
Rade M. Dacić. On Fixed Edges of Antitone Self-mappings of Complete Lattices. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a7/