The Notions of W-net and Y-compact Space Viewed Under Infinitesimal Microscope
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 243
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Nonstandard analysis of A. Robinson is used to give a
nonstandard description of the notion of $w$-net introduced by H.J. Wu
in [6]. This concept leads to the notion of $Y$-compact space so that
$[0,1]$-compact spaces are compact in the usual sence while $R$-compact
spaces are E. Hewit's realcompact spaces.
Classification :
03H05
@article{PIM_1983_N_S_34_48_a35,
author = {Rade \v{Z}ivaljevi\'c},
title = {The {Notions} of {W-net} and {Y-compact} {Space} {Viewed} {Under} {Infinitesimal} {Microscope}},
journal = {Publications de l'Institut Math\'ematique},
pages = {243 },
publisher = {mathdoc},
volume = {_N_S_34},
number = {48},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a35/}
}
TY - JOUR AU - Rade Živaljević TI - The Notions of W-net and Y-compact Space Viewed Under Infinitesimal Microscope JO - Publications de l'Institut Mathématique PY - 1983 SP - 243 VL - _N_S_34 IS - 48 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a35/ LA - en ID - PIM_1983_N_S_34_48_a35 ER -
Rade Živaljević. The Notions of W-net and Y-compact Space Viewed Under Infinitesimal Microscope. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 243 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a35/