On the Automorphism Group of an Infinite Graph
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 233 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, a specially defined automorphism group $\Gamma(G)$ of a connected countable simple infinite graph is considered. As the main result, we prove that $\Gamma(G)$ contains at most one non-trivial element. All infinite graphs with a non-trivial automorphism group are completely described. Finally, for graphs with odd, or with a small even number (2 or 4) of non-zero eignevalues, the corresponding automorphism groups are characterized.
Classification : 05C50
@article{PIM_1983_N_S_34_48_a33,
     author = {Aleksandar Torga\v{s}ev},
     title = {On the {Automorphism} {Group} of an {Infinite} {Graph}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {233 },
     publisher = {mathdoc},
     volume = {_N_S_34},
     number = {48},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a33/}
}
TY  - JOUR
AU  - Aleksandar Torgašev
TI  - On the Automorphism Group of an Infinite Graph
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 233 
VL  - _N_S_34
IS  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a33/
LA  - en
ID  - PIM_1983_N_S_34_48_a33
ER  - 
%0 Journal Article
%A Aleksandar Torgašev
%T On the Automorphism Group of an Infinite Graph
%J Publications de l'Institut Mathématique
%D 1983
%P 233 
%V _N_S_34
%N 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a33/
%G en
%F PIM_1983_N_S_34_48_a33
Aleksandar Torgašev. On the Automorphism Group of an Infinite Graph. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 233 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a33/