On the Automorphism Group of an Infinite Graph
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 233
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, a specially defined automorphism group
$\Gamma(G)$ of a connected countable simple infinite graph is
considered. As the main result, we prove that $\Gamma(G)$ contains at
most one non-trivial element. All infinite graphs with a non-trivial
automorphism group are completely described.
Finally, for graphs with odd, or with a small even number (2 or 4) of
non-zero eignevalues, the corresponding automorphism groups are
characterized.
Classification :
05C50
@article{PIM_1983_N_S_34_48_a33,
author = {Aleksandar Torga\v{s}ev},
title = {On the {Automorphism} {Group} of an {Infinite} {Graph}},
journal = {Publications de l'Institut Math\'ematique},
pages = {233 },
publisher = {mathdoc},
volume = {_N_S_34},
number = {48},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a33/}
}
Aleksandar Torgašev. On the Automorphism Group of an Infinite Graph. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 233 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a33/