On the Degre of L1-aproximation by Modified Bernstein Polynomials
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 199
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Recently many researchers like Bojanić and Shisha, and A.
Grundmann have obtained the degree of $L_1$ approximation to integrable
functions by modified Bernstein polynomials. The object of the present
note is to improve their results.
Classification :
41A36
Keywords: Lebesgue integrable function, rate of convergence, integrable modulus of continuity
Keywords: Lebesgue integrable function, rate of convergence, integrable modulus of continuity
@article{PIM_1983_N_S_34_48_a29,
author = {Suresh Prasad Singh and O.P. Varshney and Govind Prasad},
title = {On the {Degre} of {L1-aproximation} by {Modified} {Bernstein} {Polynomials}},
journal = {Publications de l'Institut Math\'ematique},
pages = {199 },
publisher = {mathdoc},
volume = {_N_S_34},
number = {48},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a29/}
}
TY - JOUR AU - Suresh Prasad Singh AU - O.P. Varshney AU - Govind Prasad TI - On the Degre of L1-aproximation by Modified Bernstein Polynomials JO - Publications de l'Institut Mathématique PY - 1983 SP - 199 VL - _N_S_34 IS - 48 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a29/ LA - en ID - PIM_1983_N_S_34_48_a29 ER -
%0 Journal Article %A Suresh Prasad Singh %A O.P. Varshney %A Govind Prasad %T On the Degre of L1-aproximation by Modified Bernstein Polynomials %J Publications de l'Institut Mathématique %D 1983 %P 199 %V _N_S_34 %N 48 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a29/ %G en %F PIM_1983_N_S_34_48_a29
Suresh Prasad Singh; O.P. Varshney; Govind Prasad. On the Degre of L1-aproximation by Modified Bernstein Polynomials. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 199 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a29/