Non-anticipative Integral Transformations of Stochastic Processes
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 175
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $X$ be a stochastic process, defined on the interval
$[0;1]$, and $Y$ its non-anticipative integral transformation defined by
$
Y(t)=\int\limits^t_0 g(t, u) X(u)du
$
In this paper we shall investigate conditions related to the family
$
G=\{g(t,u), t\in[0;1],u \leq t\}
$
under which the process $Y\!:\!1^\circ$ generates the spaces $H(Y;t)$
equal to the corresponding spaces $H(X;t)$ of the process
$\bold X; 2\circ$ belongs to the same class as the process $X; 3^\circ$
is continuous, provided $X$ is continuous.
Classification :
60G05 60G12
@article{PIM_1983_N_S_34_48_a26,
author = {Ljiljana Petrovi\'c},
title = {Non-anticipative {Integral} {Transformations} of {Stochastic} {Processes}},
journal = {Publications de l'Institut Math\'ematique},
pages = {175 },
publisher = {mathdoc},
volume = {_N_S_34},
number = {48},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a26/}
}
TY - JOUR AU - Ljiljana Petrović TI - Non-anticipative Integral Transformations of Stochastic Processes JO - Publications de l'Institut Mathématique PY - 1983 SP - 175 VL - _N_S_34 IS - 48 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a26/ LA - en ID - PIM_1983_N_S_34_48_a26 ER -
Ljiljana Petrović. Non-anticipative Integral Transformations of Stochastic Processes. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 175 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a26/