The (psi,xi,eta,g) Subspaces of the Space with the Phi(4,-2) Structure
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 147
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let a tensor field $\varphi$, $\varphi\not=0$,
$\varphi\not=1$, of type (1,1) and of class $C^\infty$ be given on
$M^n$ such that $\varphi^4-\varphi^2=0$, and rank $\varphi=n-1$. The
structure $\Phi=2\varphi-1$ is an almost product structure. $\Phi$
induces on hypersurface $K$ a Sato structure. In this paper it is
proved that the structure Sato $\psi$ induced by $\Phi$ on $K^*$ is
equal to the $\overline\varphi$. ($\overline\varphi$ is the restriction
of the structure $\varphi$ on $K^*$).
Classification :
53C10 53C15 53C40 51H20
Keywords: Almost product structure, structure Sato, hypersurface, restriction of the structure, almost paracontact Riemannian structure
Keywords: Almost product structure, structure Sato, hypersurface, restriction of the structure, almost paracontact Riemannian structure
@article{PIM_1983_N_S_34_48_a22,
author = {Jovanka Niki\'c},
title = {The (psi,xi,eta,g) {Subspaces} of the {Space} with the {Phi(4,-2)} {Structure}},
journal = {Publications de l'Institut Math\'ematique},
pages = {147 },
publisher = {mathdoc},
volume = {_N_S_34},
number = {48},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a22/}
}
TY - JOUR AU - Jovanka Nikić TI - The (psi,xi,eta,g) Subspaces of the Space with the Phi(4,-2) Structure JO - Publications de l'Institut Mathématique PY - 1983 SP - 147 VL - _N_S_34 IS - 48 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a22/ LA - en ID - PIM_1983_N_S_34_48_a22 ER -
Jovanka Nikić. The (psi,xi,eta,g) Subspaces of the Space with the Phi(4,-2) Structure. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 147 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a22/