Graphs with Maximum and Minimum Independence Numbers
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 73
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If $r(G,k)$ is the number of selections of $k$ independent
vertices in a graph $G$, and if $r(G,k)>r(H, k)$, the graph $G$ is
$i$-greater than the graph $H$. The maximal and the minimal graphs
w.r.t. the above property are determined in the class of acyclic,
unicyclic, connected acyclic and connected unicyclic graphs.
Classification :
05C35
@article{PIM_1983_N_S_34_48_a12,
author = {Ivan Gutman},
title = {Graphs with {Maximum} and {Minimum} {Independence} {Numbers}},
journal = {Publications de l'Institut Math\'ematique},
pages = {73 },
publisher = {mathdoc},
volume = {_N_S_34},
number = {48},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a12/}
}
Ivan Gutman. Graphs with Maximum and Minimum Independence Numbers. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 73 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a12/