Graphs with Maximum and Minimum Independence Numbers
Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 73 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $r(G,k)$ is the number of selections of $k$ independent vertices in a graph $G$, and if $r(G,k)>r(H, k)$, the graph $G$ is $i$-greater than the graph $H$. The maximal and the minimal graphs w.r.t. the above property are determined in the class of acyclic, unicyclic, connected acyclic and connected unicyclic graphs.
Classification : 05C35
@article{PIM_1983_N_S_34_48_a12,
     author = {Ivan Gutman},
     title = {Graphs with {Maximum} and {Minimum} {Independence} {Numbers}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {73 },
     publisher = {mathdoc},
     volume = {_N_S_34},
     number = {48},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a12/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - Graphs with Maximum and Minimum Independence Numbers
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 73 
VL  - _N_S_34
IS  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a12/
LA  - en
ID  - PIM_1983_N_S_34_48_a12
ER  - 
%0 Journal Article
%A Ivan Gutman
%T Graphs with Maximum and Minimum Independence Numbers
%J Publications de l'Institut Mathématique
%D 1983
%P 73 
%V _N_S_34
%N 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a12/
%G en
%F PIM_1983_N_S_34_48_a12
Ivan Gutman. Graphs with Maximum and Minimum Independence Numbers. Publications de l'Institut Mathématique, _N_S_34 (1983) no. 48, p. 73 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_34_48_a12/