A Generalization of a Theorem of A. D. Otto
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 69

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we prove that if $G$ is a finite $p$-group of class $c$ with $G/G'$ of exponent $p^r$ and $L_i/L_{i+}$ is cyclic of order $p^r$ for $i= 1, 2,\dots, c-1$, where $L_i$, $i=0,1,\dots,c$ is the lower central series of $G$, then the order of $G$ divides the order of the group $A(G)$ of automorphisms of $G$.
Classification : 1650 1660 0510
@article{PIM_1983_N_S_33_47_a9,
     author = {Theodoros Exarchakos},
     title = {A {Generalization} of a {Theorem} of {A.} {D.} {Otto}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {69 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/}
}
TY  - JOUR
AU  - Theodoros Exarchakos
TI  - A Generalization of a Theorem of A. D. Otto
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 69 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/
LA  - en
ID  - PIM_1983_N_S_33_47_a9
ER  - 
%0 Journal Article
%A Theodoros Exarchakos
%T A Generalization of a Theorem of A. D. Otto
%J Publications de l'Institut Mathématique
%D 1983
%P 69 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/
%G en
%F PIM_1983_N_S_33_47_a9
Theodoros Exarchakos. A Generalization of a Theorem of A. D. Otto. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 69 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/