A Generalization of a Theorem of A. D. Otto
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 69
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we prove that if $G$ is a finite $p$-group of
class $c$ with $G/G'$ of exponent $p^r$ and $L_i/L_{i+}$ is cyclic of order
$p^r$ for $i= 1, 2,\dots, c-1$, where $L_i$, $i=0,1,\dots,c$ is the lower
central series of $G$, then the order of $G$ divides the order of the group
$A(G)$ of automorphisms of $G$.
Classification :
1650 1660 0510
@article{PIM_1983_N_S_33_47_a9,
author = {Theodoros Exarchakos},
title = {A {Generalization} of a {Theorem} of {A.} {D.} {Otto}},
journal = {Publications de l'Institut Math\'ematique},
pages = {69 },
year = {1983},
volume = {_N_S_33},
number = {47},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/}
}
Theodoros Exarchakos. A Generalization of a Theorem of A. D. Otto. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 69 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/