A Generalization of a Theorem of A. D. Otto
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 69 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we prove that if $G$ is a finite $p$-group of class $c$ with $G/G'$ of exponent $p^r$ and $L_i/L_{i+}$ is cyclic of order $p^r$ for $i= 1, 2,\dots, c-1$, where $L_i$, $i=0,1,\dots,c$ is the lower central series of $G$, then the order of $G$ divides the order of the group $A(G)$ of automorphisms of $G$.
Classification : 1650 1660 0510
@article{PIM_1983_N_S_33_47_a9,
     author = {Theodoros Exarchakos},
     title = {A {Generalization} of a {Theorem} of {A.} {D.} {Otto}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {69 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/}
}
TY  - JOUR
AU  - Theodoros Exarchakos
TI  - A Generalization of a Theorem of A. D. Otto
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 69 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/
LA  - en
ID  - PIM_1983_N_S_33_47_a9
ER  - 
%0 Journal Article
%A Theodoros Exarchakos
%T A Generalization of a Theorem of A. D. Otto
%J Publications de l'Institut Mathématique
%D 1983
%P 69 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/
%G en
%F PIM_1983_N_S_33_47_a9
Theodoros Exarchakos. A Generalization of a Theorem of A. D. Otto. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 69 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a9/