On Sehgal's Maps with a Contractive Iterate at a Point
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 59
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $(X,d)$ be a complete metric space and $T$ a mapping of
$X$ into itself. Suppose that for each $x\in X$ there exists a positive
integer $n=n(x)$ such that for all $y\in X$,
$
d(T^nx,T^ny)\leq \alpha\max\{d(x,y), d(x,Ty), d(x,T^2y),\dots, d(x,T^ny),
d(x,T^nx)\},
$
holds tor some $\alpha1$. With these assumptions our main result states
that $T$ has a unique fixed point. This generalizes an earlier result of
V. M. Sehgal and a recent result of the author.
Classification :
54H25 47H10
Keywords: Mappings with contractive iteration at a point, fixed points, convergence of iterations
Keywords: Mappings with contractive iteration at a point, fixed points, convergence of iterations
@article{PIM_1983_N_S_33_47_a7,
author = {Ljubomir \'Ciri\'c},
title = {On {Sehgal's} {Maps} with a {Contractive} {Iterate} at a {Point}},
journal = {Publications de l'Institut Math\'ematique},
pages = {59 },
publisher = {mathdoc},
volume = {_N_S_33},
number = {47},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a7/}
}
Ljubomir Ćirić. On Sehgal's Maps with a Contractive Iterate at a Point. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 59 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a7/