1-factorization of the Composition of Regular Graphs
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 193
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
1-factorability of the composition of graphs is studied. The
followings sufficient conditions are proved: $G[H]$ is 1-factorable if $G$
and $H$ are regular and at least one of the following holds: (i) Graphs $G$
and $H$ both contain a 1-factor, (ii) $G$ is 1-factorable (iii) $H$ is
1-factorable. It is also shown that the tensor product $G\otimes H$ is
1-factorable, if at least one of two graphs is 1-factorable. This result in
turn implies that the strong tensor product $G\otimes' H$ is 1-factorable, if
$G$ is 1-factorable.
Classification :
05C15
Keywords: Regular graph, edge-colouring, 1-factorization
Keywords: Regular graph, edge-colouring, 1-factorization
@article{PIM_1983_N_S_33_47_a27,
author = {Toma\v{z} Pisanski and John Shawe-Taylor and Bojan Mohar},
title = {1-factorization of the {Composition} of {Regular} {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {193 },
publisher = {mathdoc},
volume = {_N_S_33},
number = {47},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a27/}
}
TY - JOUR AU - Tomaž Pisanski AU - John Shawe-Taylor AU - Bojan Mohar TI - 1-factorization of the Composition of Regular Graphs JO - Publications de l'Institut Mathématique PY - 1983 SP - 193 VL - _N_S_33 IS - 47 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a27/ LA - en ID - PIM_1983_N_S_33_47_a27 ER -
%0 Journal Article %A Tomaž Pisanski %A John Shawe-Taylor %A Bojan Mohar %T 1-factorization of the Composition of Regular Graphs %J Publications de l'Institut Mathématique %D 1983 %P 193 %V _N_S_33 %N 47 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a27/ %G en %F PIM_1983_N_S_33_47_a27
Tomaž Pisanski; John Shawe-Taylor; Bojan Mohar. 1-factorization of the Composition of Regular Graphs. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 193 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a27/